# ANNA UNIVERSITY OF TECHNOLOGY, COIMBATORE 

B.E. I B.TECH. DEGREE EXAMINATIONS : NOV I DEC 2011

## REGULATIONS : 2008

## FOURTH SEMESTER - CIVIL ENGINEERING

 080100019 - STRENGTH OF MATERIALS
## Max.Marks: 100

## PART - A

( $10 \times 2=20$ MARKS $)$

## ANSWER ALL QUESTIONS

1. Differentiate between shear strain and compressive strain
2. State Maxwell's reciprocal theorem.
3. Draw the bending moment diagram for a cantilever beam with uniformly distributed load over the entire span.
4. What are the methods used to find slope and deflection of a loaded beam?
5. Give the Euler's formula to calculate critical load for a column.
6. Differentiate between thin and thick cylinders.
7. What do you mean by strain energy?
8. Define principal stress
9. What are the assumptions made in Winkler-Bach theory?
10. Write the differences between symmetrical and unsymmetrical bending.

PART-B

## ANSWER ALL QUESTIONS

11. (a) In a tensile test, a test piece of 25 mm diameter, 200 mm gauge length, stretched 0.0975 mm under a pull of 50 kN . In a torsion test, the same rod twisted 0.025 radian over a length of 200 mm when a torque of 0.4 kNm was applied. Evaluate Poisson's ratio and the three elastic moduli for the material.

## (OR)

11. (b) A steel bar 4 cm by 4 cm in section, 3 m long is subjected to an axial pull of 128 kN . Taking $\mathrm{E}=200 \mathrm{GN} / \mathrm{m}^{2}$ calculate the alteration in the length of the bar. Calculate also the amount of energy stored in the bar during the extension.
12. (a) Derive the expression for a fixed beam carrying a concentrated load eccentrically placed on the beam.
(OR)
13. (b) A steel girder of 6 m length acting as a beam carries a uniformly distributed load $\mathrm{w} \mathrm{N} / \mathrm{m}$ run throughout its length. If $\mathrm{I}=30 \times 10^{-6} \mathrm{~m}^{4}$ and depth 270 mm , calculate (i) The magnitude of $w$ so that the maximum stress developed in the beam section does not exceed $72 \mathrm{MN} / \mathrm{m}^{2}$. (ii) The slope and the deflection (under this load) in the beam at a distance of 1.8 m from one end.
Take $\mathrm{E}=200 \mathrm{GN} / \mathrm{m}^{2}$.
14. (a) A hollow C.I column whose diameter is 200 mm has a thickness of 20 mm . It is 4.5 m long and is fixed at both ends. Calculate the safe load by Rankine-Gordon formula using a factor of safety of 4 .

## (OR)

13. (b) A thick walled closed-end cylinder is made of an A1-alloy ( $\mathrm{E}=72 \mathrm{GPa},(1 / \mathrm{m})=$ 0.33 ), has inside diameter of 200 mm and outside diameter of 800 mm . the cylinder is subjected to internal fluid pressure of 150 MPa . Determine the principal stresses and maximum shear stress at a point on the inside surface of the cylinder. Also determine the increase in inside diameter due to fluid pressure.
14. (a) A piece of material as in figure 1 is subjected to two compressive stresses at right angles, their values being $40 \mathrm{MN} / \mathrm{m}^{2}$ and $60 \mathrm{MN} / \mathrm{m}^{2}$. Find the position of the plane across which the resultant stress is most inclined to the normal and determine the value of this resultant stress.

(a)

$$
\text { Figure - } 1
$$

## (OR)

14. (b) A shaft is subjected to a maximum torque of 10 kNm and a maximum bending moment of 7.5 kNm at a particular section. If the allowable equivalent stress in simple tension is $160 \mathrm{MN} / \mathrm{m}^{2}$ find the diameter of the shaft according to the maximum shear stress theory.
15. (a) A cantilever of I section, 2.4 m long is subjected to a load of 200 N at free end as shown in figure 2. Determine the resulting bending stresses at corners $A$ and $B$, on the fixed section of the cantilever.


Figure 2
(OR)
15. (b) A curved bar is formed of a tube of 120 mm outside diameter and 7.5 mm thickness. The centre line of this beam is a circular arc of radius 225 mm . a bending moment of 3 kNm tending to increase curvature of the bar is applied. Calculate the maximum tensile and compressive stresses set up in the bar.

