ANNA UNIVERSITY OF TECHNOLOGY, COIMBATORE

B.E. / B.TECH, DEGREE EXAMINATIONS: NOV / DEC 2011

REGULATIONS: 2008

FOURTH SEMESTER: CIVIL ENGG.

080100020 - APPLIED HYDRAULIC ENGINEERING

Time: 3 Hours

Max.Marks: 100

PART - A

 $(10 \times 2 = 20 \text{ MARKS})$

ANSWER ALL QUESTIONS

- 1. Write the types of regimes of flow.
- 2. What is specific energy?
- 3. Define uniform flow and laminar flow.
- 4. Write the Chezys equation
- 5. If the depth increases in the direction of flow, what type of curve is formed?
- 6. What is horizontal slope?
- 7. Define negative slip
- 8. What is cavitation?
- 9. Differentiate pump and turbine.
- 10. Give example for reaction turbine.

PART - B

 $(5 \times 16 = 80 \text{ MARKS})$

ANSWER ALL QUESTIONS

11 a) Derive the equations for i) Critical depth ii) Critical velocity and iii) Minimum specific energy in terms of critical depth.

OF

b) Find the slope of the bed of a rectangular channel of width 5m when the depth of water is 2m and the rate of flow is given as $20m^3/s$. Assume C = 50

12 a) Calculate the normal depth of flow for a trapezoidal channel having side slopes of 2H to 1V and bottom width 5 meter, discharging 8 m^3/s . Take n = 0.025 and slope as 1/750

OR

- 12 b) A trapezoidal channel is to carry 142 m³/ minute of water is designed to have minimum cross section. Find, bottom width and depth, if the bed slope is 1 in 1200, the side slopes are 45° and Chezys coefficient is 55.
- 13 a) Derive the Dynamic equation of Gradually varied flow.

OR

- 13 b) The depth of flow of water at a certain section of a rectangular channel of 2m wide is 0.3m. The discharge through the channel is 1.5 m³/s. determine whether the hydraulic jump will occur or not, if so find its height, loss of energy per kg of water and power lost.
- 14 a) Draw a neat sketch of a Reciprocating pump and name the components, and explain the working procedure.

OR

- 14 b) i) A centrifugal pump is to discharge 0.118 m³/s at a speed of 1450 rpm, against a head of 25m. The impeller diameter is 250mm, its width at outlet is 50mm and manometric efficiency is 75%. Determine the vane angle at the outer periphery of the impeller.
 (10)
 - ii) Explain coefficient of discharge, slip and percentage of slip and negative slip in reciprocating pump.(6)

15 a)	A Pelton wheel is to develop 13250 Kw under a net head of 800m, while running at a
	speed of 600 rpm. If the coefficient of the jet is 0.46, jet diameter is 1/15 of wheel
	diameter. Assuming overall efficiency as 85%, calculate

i) Diameter of the jet

ii) diameter of the wheel

iii) Discharge

and iv) Number of jets.

OR

15 b i) Write the various types of classifications of turbines

(8)

Explain the different types of draft tubes with neat sketches.

(8)

*****THE END*****