	Reg. No.	:							
(Question	Paper	· Cod	e : X	K 20	2 9 4	4		
B.E./B.Tech		XAMINA PRIL/MA`	,	, NOV	V./DEO	C. 202	20 A	ND	
	-	ourth Sen vil Engin							
\mathbf{CE}	6403 – APPLIE	D HYDR	AULIC	ENGI	NEER	ING			
	(1	Regulatio	ns 2013)					
(Common to PT	CE 6403 – Appl	lied Hydr	aulic Er	nginee	ring fo	r B.E.	(Part	t-Tin	ne)
– Four	rth Semester – C	Civil Engi	neering	(Regu	lation	s - 20	14))		
					_				

Time : Three Hours

Maximum : 100 Marks

Answer ALL questions.

PART - A

(10×2=20 Marks)

- Differentiate prismatic and non prismatic channels. 1.
- 2.What are the conditions for most economical rectangular channel section ?
- State the dynamic equation of gradually varied flow. 3.
- Classify the channel bottom slopes. 4.
- What are surges in an open channel flow ? 5.
- Define Impulse momentum principle. 6.
- 7. What are the types of casing in centrifugal pump?
- 8. Define negative slip.
- 9. Draw typical velocity triangles for inlet and outlet of pelton wheel.
- 10. What are the causes of cavitation ?

PART - B(5×13=65 Marks)

11. a) A most economical trapezoidal section is required to give a maximum discharge of 20 m³/s of water. The slope of the channel bottom is 1 in 1500. Taking C = 70, in Chezy's equation, determine the dimension of the channel.

X 20294

(6)

(7)

- b) i) Derive the relationship between flow depth and breadth of a rectangular channel, to be an economical section. (6)
 - ii) A rectangular channel which is laid on a bottom slope of 1 in 160 is to carry 20 m^3 /s of water. Determine the width of the channel when the flow is in critical condition. Take Manning's constant n = 0.014. (7)

(OR)

- 12. a) i) Show that the hydraulic radius is half the flow depth for the most economical trapezoidal channel section.
 - ii) Determine the most economical rectangular section of a rectangular channel carrying water at the rate of 0.6 cumecs. The bed slope of the channel is 1 in 2000. Assume Chezy's constant C = 50. (7) (OR)
 - b) i) A river 100 m wide and 3 m deep has an average bed slope of 0.0005. Estimate the length of Gradually Varied Flow profile produced by a low weir which raises the water surface just upstream of it by 1.5 m. Assume N = 0.035. Use direct step method with three steps.
 - ii) A rectangular flume 2m wide discharges at the rate of 2 m³/sec. The bed slope of the flume is 1 in 2500. At a certain section the depth of flow is 1 m. Calculate the distance of the section downstream where the depth of flow is 0.9 m. Slove by single step method. Assume rugosity coefficient as 0.014.
- 13. a) The Froude number before the jump is 10.0 in a hydraulic jump occurring in a rectangular channel and the energy loss is 3.20 m. Estimate the
 - i) Sequent depth (6)
 - ii) The discharge per unit width.

(OR)

- b) A rectangular channel carries a flow with a velocity of 0.65 m/s and depth of flow 1.4 m. The discharge is abruptly increased three fold by a sudden lifting a gate on the upstream. Estimate the velocity and the height of resulting surge.
- 14. a) i) Distinguish between impulse and reaction turbines. (7)
 - ii) Define the following for a turbine :
- (3×2=6 Marks)

- 1) Manometric Efficiency
- 2) Volumetric Efficiency
- 3) Mechanical Efficiency.

(OR)

b) A Kaplan turbine runner is to be designed to develop 8600 kW. The net available head is 6.6 m. If the speed ratio = 2.09, flow ratio = 0.60, overall efficiency 84% and the diameter of t he boss is 1/3 the diameter of the runner. Find the diameter of the runner, its speed and the specific speed of the turbine.

15. a) What is a reciprocating pump ? Describe the principle and working of a reciprocating pump with a neat sketch.

(OR)

- b) i) With the help of neat sketches, explain the features of a volute type and a diffusion type centrifugal pump. (6)
 - ii) A centrifugal pump delivers salt water against a net head of 15 m at a speed of 100 rpm. The vanes are curved backward at 30° with the periphery. Obtain the discharge for an impeller diameter of 30 cm and outlet width of 5 cm at a manometric efficiency of 90%. (7)

PART – C (1×15=15 Marks)

16. a) Write in detail about the application of hydraulic devices (any five).

(5×3=15 Marks)

(OR)

b) A Pelton wheel is required to develop 9530 kW when working under a head of 300 m. The speed of the Pelton wheel is 550 r.p.m. The co-efficient of velocity is 0.97 and the speed ratio is 0.48. Assuming jet ratio as 10 and overall efficiency as 85%. Design the following :

i)	The number of jets.	(5)
ii)	The diameter of the wheel	(5)
	The quantity of water required.	(5)