ANNA UNIVERSITY OF TECHNOLOGY, COIMBATORE
 B.E. I B.TECH. DEGREE EXAMINATIONS : NOV I DEC 2011
 REGULATIONS : 2008
 FIFTH SEMESTER : CIVIL ENGINEERING 080100028 - STRUCTURAL ANALYSIS - I

Time : 3 Hours

PART - A

ANSWER ALL QUESTIONS

1. What is the principle of virtual strain energy?

Write the equation for strain energy stored in terms of axial force P
Give the uses of influence lines
What is meant by Equivalent uniformly distributed load?
Give the value of BM of a three hinged arch subjected to UDL over its entire span.

What do you mean by theoretical arch?
Write the Eddy's theorem for arches
Differentiate the Flexibility and Stiffness of the members.
List the classical methods of structural analysis.
Define Distribution factor.

PART - B

ANSWER ALL QUESTIONS

11. (a) A simply supported beam $A B$ of length 8 m is subjected to UDL of intensity $5 \mathrm{kN} / \mathrm{m}$ for its whole length, find the slope at the support A. Use Dummy load method.
12. (b) A cantilever $A B$ of length 10 m is subjected to point load of 8 kN at its free end B and UDL of intensity $6 \mathrm{kN} / \mathrm{m}$ for its half length from its support. Find the vertical deflection at 7 m from free end
13. (a) A UDL of load intensity $0.8 \mathrm{kN} / \mathrm{m}$ of length 10 m crosses a beam of 48 m . Find the maximum positive and negative shear force and max bending moment at 15 m from the left end. Also find the absolute maximum bending moment.

(OR)

(b) A series of concentrated loads of $12 \mathrm{kN}, 14 \mathrm{kN}, 26 \mathrm{kN}, 7 \mathrm{kN} \& 10 \mathrm{kN}$ having 9 m , $8 \mathrm{~m}, 4 \mathrm{~m} \& 6 \mathrm{~m}$ distances respectively apart between them and leading by 10 kN load passes from left to right over the span of 42 m . Find the maximum bending moment at section 13 m from the left support.
*
13. (a) A circular arch rib of 24 m span with a central rise of 4.8 m is hinged at the crown and the springing which are at the same level. It carries a point load of 100 kN at a distance of 7 m from the left end. Calculate the support resultant reactions and draw the BMD

(OR)

(b) A UDL of $40 \mathrm{kN} / \mathrm{m}$ covers left half of the span of a two hinged parabolic arch span 20 m and central rise 8 m . Determine the position and magnitude of max BM. Also evaluate the forces acting at a section 8 m from left end. Assume M. varies as secant of slope of the section.
14. (a) Analyse the continuous beam shown in figure 1, by slope deflection method and draw the SFD and BMD. El is constant.

(b) Analyse the frame shown in figure 2, by slope deflection method and draw the BMD. Flexural rigidity is constant for all members.

figure 2
15. (a) Analyse the rigid frame shown in figure 3, by moment distribution method and draw the BMD.

figure 3.
(OR)
(b) Analyse the continuous beam, shown in figure 4, by moment distribution method. Draw B.M.D

figure 4.

