Reg. No. : \square

Question Paper Code : 27128

B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2015.

Fifth Semester

Civil Engineering

CE 6505 - DESIGN OF REINFORCED CONCRETE ELEMENTS

(Regulations 2013)
Time : Three hours
Maximum : 100 marks

Answer ALL questions.

PART A - ($10 \times 2=20$ marks $)$

1. Write a short note on limit state of durability.
2. What is partial safety factor?
3. Differentiate between under reinforced and over reinforced section.
4. Enumerate balanced section?
5. What is the formula used to find the spacing of inclined stirrups?
6. What are the functions of longitudinal reinforcement with respect to torsion?
7. What is meant by braced column?
8. How the compression failures occur in columns?
9. What is meant by proportioning of footings?
10. On which circumstances combined rectangular footings are suitable?

$$
\text { PART B }-(5 \times 16=80 \text { marks })
$$

11. (a) Explain the codal recommendations for limit states design?

Or
(b) Design a rectangular section for a simply supported reinforced concrete beam of effective span of 5 m carrying a concentrated load of 40 kN at its mid span. The concrete to be used is of grade M20 and the reinforcement consists of Fe 415 steel bars.
(i) Self weight of beam is ignored
(ii) Self weight of beam is considered.

Use working stress method.
12. (a) Design a T-beam section with a flange width of 1250 mm , a flange depth of 100 mm , a web width of 250 mm and an effective depth of 500 mm , which is subjected to a factored moment of 560 kNm . The concrete mix is to be used is of grade M20 and steel is of grade Fe415. Use limit state method.

Or

(b) Design a slab over a room $5 \mathrm{~m} \times 7 \mathrm{~m}$ as per I.S.code. The slab is supported on masonry walls all round with adequate restraint and the corners are held down. The live load on the slab is $300 \mathrm{~N} / \mathrm{m}^{2}$. The slab has a bearing of 150 mm on the supporting walls.
13. (a) Design a shear of rectangular reinforced concrete beam section to carry a factored bending Moment of 200 kNm , factored shear force of 120 kN , and a factored torsional moment of 75 kNm . Use M20 grade concrete and Fe415 steel.

Or

(b) A simply supported RC beam of size $300 \times 500 \mathrm{~mm}$ effective is reinforced with 4 bars of 16 mm diameter HYSD steel of grade Fe415. Determine the anchorage length of the bars at the simply supported end if it is subjected to a factored force of 350 kN at the centre of 300 mm wide masonry support. The concrete mix of grade M20 is to be used. Draw the reinforcement details.
14. (a) Design a column having an effective length of 4.75 m to support a factored load of 1650 kN . Consider the reinforcement ratio ρ to be in the range 1.5 to 2.0 percent and the effective cover to longitudinal steel of 55 mm . The materials to be used are M25 grade of concrete and HYSD steel bars of grade Fe415.
(b) A braced reinforced concrete column of circular cross-section of 500 mm diameter is to support a factored axial load of 2250 kN along with a factored moment of 160 kNm . The unsupported length of the column is 6.3 m with effective length of 5.5 m . Design the column when it is to be provided with:
(i) Lateral ties and
(ii) Spiral reinforcement.

The M25 grade of concrete and HYSD steel bars of grade Fe415.
15. (a) A 230 mm thick masonry wall is to be provided with a reinforced concrete footing on a site having soil with SBC, unit weight and angle of repose of $125 \mathrm{kN} / \mathrm{m}^{2}, 17.5 \mathrm{kN} / \mathrm{m}^{3}$ and 30° respectively. Use M20 grade of concrete and HYSD steel bars of grade Fe415. Design the footing when the wall supports at service state, a load of $150 \mathrm{kN} / \mathrm{m}$ length.

Or
(b) A Rectangular column $600 \times 400 \mathrm{~mm}$ carries a load of 800 kN . Design a rectangular footing to support the column. The safe bearing capacity of the soil is $200 \mathrm{kN} / \mathrm{m}^{2}$. Use M20 grade concrete.

