Reg. No.

Question Paper Code : 51259

B.E./B.Tech. DEGREE EXAMINATION, MAY/JUNE 2016

Sixth Semester

Civil Engineering

CE 2351/CE 61/CE 1352/080100036/10111 CE 602 - STRUCTURAL ANALYSIS - II

(Regulations 2008/2010)

(Common to PTCE 2351/10111 CE 602 – Structural Analysis – II for B.E. (Part-Time) Fourth Semester – Civil Engineering – Regulations 2009/2010)

Time : Three Hours

Maximum : 100 Marks

Answer ALL questions. PART – A $(10 \times 2 = 20 \text{ Marks})$

- 1. Differentiate pin-jointed plane frame and rigid jointed plane frame.
- 2. Mention any two methods of determining the joint deflection of a perfect frame.
- 3. Write the element stiffness matrix for a beam element.
- 4. When is stiffness method preferred over flexibility method?
- 5. Mention the applications of beam element.
- 6. Define plane stress.
- 7. List the assumptions made in pure bending.
- 8. What is plastic modulus ?
- 9. The load transfer mechanism in suspension cables are through axial force, bending moment and shear Force. State true or false with an explanation.
- 10. What is the shape of the cable with a stiffened three hinged girder ? Give brief explanation.

1

$PART - B (5 \times 16 = 80 Marks)$

11. (a) A cantilever of length 15 metres is subjected to a single concentrated load of 50 kN at the middle of the span. Find the deflection at the free end using flexibility matrix method. El is uniform throughout.

OR

- (b) A two span continuous beam ABC is fixed at A and hinged at supports B and C. Span of AB = span of BC = 9m. Set up flexibility influence co-efficient matrix assuming vertical reaction at B and C as redundant.
- (a) Analyse the continuous beam shown in Fig. Q. 12 (a) using displacement method. EI is constant throughout.

Fig. Q. 12 (a)

OR

(b) Analyse the pin-jointed truss shown in Fig. Q. 12 (b) by stiffness matrix method. Take area of cross-section for all members = 1000 mm^2 and modulus of elasticity E = 200 kN/mm^2 .

Fig. Q. 12 (b)

51259

 (a) Explain the applications of beam elements and triangular elements in finite element method.

OR

- (b) Explain the procedure involved in solving plane stress and plane strain problems in finite element analysis.
- 14. (a) A uniform beam of span 5 m and fully plastic moment M_p is simply supported at one end and rigidly clamped at other end. A concentrated load of 20 kN may be applied anywhere within the span. Find the smallest value of M_p such that collapse would first occur when the load is in its most unfavourable position.

OR

(b) Explain the following :

1

- (i) Plastic modulus
- (ii) Shape factor
- (iii) Load factor.
- 15. (a) Using the method of Tension Coefficient, determine the forces in the members of the crane structure shown in Fig. Q. No. 15 (a)

Fig. Q. No. 15 (a)

OR 3 (b) Find the value of plastic moment for the portal frame shown in Fig. Q. No. 15 (b) loaded upto collapse.

Fig. Q. No. 15 (b)

otad bad. (iii)

1