		VS.25-18			E STORY			
Reg. No.:							•	

Question Paper Code: 71587

B.E./B.Tech. DEGREE EXAMINATION, APRIL/MAY 2017.

Sixth Semester

Civil Engineering

CE 6603 — DESIGN OF STEEL STRUCTURES

(Regulations 2013)

Time: Three hours

Maximum: 100 marks

Use of IS 800 - 2007 IS 875 - Part 3 and Steel Tables is permitted.

Answer ALL questions.

PART A — $(10 \times 2 = 20 \text{ marks})$

- 1. Define nominal diameter of rivet.
- 2. What is meant by pitch of rivet?
- 3. What are the various types of tension members?
- 4. What is net sectional area?
- 5. What is meant by a strut?
- 6. What are the assumptions made in Euler's analysis?
- 7. What is meant by slender section?
- 8. What are the classifications in stiffeners?
- 9. Draw neat sketches of various types of roof trusses.
- 10. List the various forces acting on a gantry girder.

PART B — $(5 \times 16 = 80 \text{ marks})$

11. (a) A tie member 75 mm × 8 mm connected to a 10 mm thick gusset plate is to transmit a load of 90 kN. Design the fillet weld and calculate the necessary over lap. Assume site welding.

Or

- (b) A single bolted double cover butt Joint is used to connect two plates of 8 mm thickness. Assuming 20 mm bolts at 50 mm pitch, calculate the efficiency of the joint. The thickness of cover plate is 4 mm.
- 12. (a) Determine the tensile strength of a roof truss diagonal $100 \times 75 \times 10$ mm connected to the gusset plate by 4 nos. of 20 mm diameter power driven rivets in one row along the length of the member. The short leg of the angle is kept outstanding.

Or

- (b) A bridge truss diagonal carrier an axial bull of 300 kN. Two mild steel flats 250 ISF 10 and ISF 18 of the diagonal are to be joined together. Design a suitable splice.
- 13. (a) Design a built up column 6 m long to carry a load of 400 kN. The column is restrained in position but not in direction at both the ends. Provide single angle lacing system with bolted connections.

Or

- (b) A built up column consists of ISHB 400 @ 77.40 kg/m with one 300 mm× 12 mm flange plate on each side. The column carries an axial load of 2600 kN. Design a gusseted base if the column is supported on concrete pedestal with a bearing pressure of 5 N/mm².
- 14. (a) Design a laterally restrained simply supported beam to carry a uniformly distributed load of 44 kN/m. The effective span of the beam is 8 m. A bearing length of 75 mm is provided at the supports.

Or

2

(b) Design a rolled steel I section for a simply supported beam with a clear span of 6 m. It carries a U.D.L. of 50 kN/m exclusive of self weight of the girder. The beam is laterally unsupported.

15. (a) Design a purlin for a roof truss having the following data:

Span of the truss = 6 m

Spacing of the truss = 3 m c/c

Inclination of the roof = 30

Spacing of purlin = 2 m c/c

Wind pressure = 1.5 kN/m²

Roof coverage = A.C sheeting weighing 200 N/m²

Provide a channel section purlin.

Or

- (b) (i) List out various elements of the roof truss and give their design requirements. (8)
 - (ii) Explain the design principles of Gantry Girder. (8)