	~	-
Re	υ.	
		 -

Question Paper Code : 51255

B.E./B.Tech. DEGREE EXAMINATION, MAY/JUNE 2016

Fifth Semester

Civil Engineering

CE 2303/CE 52/10111 CEE 49 – RAILWAYS, AIRPORTS AND HARBOUR ENGINEERING

(Regulations 2008/2010)

(Common to PTCE 2303/10111 CEE 49 Railways, Airports and Harbour Engineering for B.E. – (Part-Time) Fourth Semester – Regulations 2009/2010)

Time : Three Hours

2

2

Maximum : 100 Marks

Answer ALL questions. PART – A $(10 \times 2 = 20 \text{ Marks})$

- 1. Define sleeper density.
- 2. Sketch the cross-section of the permanent way.
- 3. List the components of a switch.
- 4. Differentiate between 'loop' and 'siding'.
- 5. What are the factors influencing the runway length based on safety requirements?

1

- 6. State the primary functions of an airport drainage system.
- 7. Define calm period.
- 8. Why is airport Zoning important?
- 9. Write down the equation used for finding the harbour entrance.
- 10. Differentiate between a 'wharf' and a 'jetty'.

$PART - B (5 \times 16 = 80 marks)$

 (a) What is a sleeper ? List the functions, types of sleepers and compare one another.

Question Raper (nole, 51255

- (b) (i) What do you understand by 'cant deficiency'?
 - (ii) Explain the widening of gauge on curves with the formula.
- 12. (a) Determine all the elements of a turnout, when the following data is given :

Heel Divergence	=(0	13.65cm
Angle of Switch		1° 34'27"
Gauge	=	1.676 m
Number of Crossing	=	8.5

(added of OR OTHER AND A

- (b) What are the different systems of controlling the movement of trains ? Explain the working principle of the system(s) which has been widely used on Indian Railways.
- 13. (a) (i) Length of a runway at mean sea level, standard temperature and Zero gradients is 1600 m. The site has an elevation of 320 m, with a references temperature 33.6°C. The runway has to be constructed with, an effective gradient of 0.25%. Determine the actual length of the runway at the site. (10)
 - (ii) Write the construction procedure of the wind rose diagram.

OR

(6)

(8)

(8)

2

(b) (i) Following are average wind data for 10 years when wind Intensity is above 6 Km/hr. An airport is to be designed for a single runway. Determine the best runway orientation and calculate total wind coverage and draw the wind rose diagram.

direction	N	NNE	NC	ENE	E	ESE	SE	SSE	S	SSW
Percentage of time	10.9	8.3	4.2	1.3	0.9	0.3	8.1	7.9	14.6	9.8
Wind direction	SW	wsw	w	WNW	NW	NNW				
Percentage of time	5.6	1.8	0.3	0.2	7.5	5.7				

(ii) Write short notes on :

Wind

14.

(1) Airport drainage

- (2) Factors considered in taxiway design.
- (a) Enlist and explain the factors to be considered for the selection of site of an airport. Discuss the critical issues involved.

OR

- (b) (i) What are the different types of terminals ? Explain its concepts with neat sketches.
 (8)
 - (ii) Describe the principle of operation of ILS with the help of a diagram. (8)
- 15. (a) Describe briefly the functions of fixed and floating signals with necessary sketches.

OR

(b) Explain the different types of wind-rose diagrams used for finding the harbour entrance.

(8)

(4)

(4)