Reg. No.:			T						
-----------	--	--	---	--	--	--	--	--	--

Question Paper Code: 73265

B.E./B.Tech. DEGREE EXAMINATION, APRIL/MAY 2017.

Seventh Semester

Civil Engineering

CE 2403/CE 73/10111 CE 703 — BASICS OF DYNAMICS AND ASEISMIC DESIGN

(Regulations 2008/2010)

(Common to PTCE 2403/10111 CE 703- Basics of Dynamics and Aseismic Design for B.E. (Part-Time) Fifth/Seventh Semester - Civil Engineering - Regulations 2009/2010)

Time: Three hours

Maximum: 100 marks

Use of IS 1893— 2002/IS 13920 —1993 (Reaffirmed 1999) and IS 4326— 1993 is permitted)

Answer ALL questions.

PART A — $(10 \times 2 = 20 \text{ marks})$

- 1. Explain Frequency Ratio.
- 2. Explain Critical Damping.
- 3. Write any two assumptions that are made in the idealization of a shear building.
- 4. Enumerate orthogonality and normality principles.
- 5. What is the difference between intensity and magnitude of earthquake?
- 6. What is Modified Mercalli scale?
- 7. What is meant by liquefaction of soil?
- 8. What is meant by zero period acceleration?
- 9. How to reduce the earthquake effects on building?
- 10. What is shear flexure failure?

- 11. (a) Derive the equation of motion of a single degree of freedom system for free vibration and find the solution for
 - (i) under damped system and (8)
 - (ii) over damped system (8)

Or

- (b) A simple Supported rectangular beam has a span of 1 m. It is 100 mm wide and 10 mm deep. It is connected at mid-span of a beam by means of a linear spring having a stiffness of 100 kg/cm and a mass of 300 kg is attached at the other end of spring. Determine the natural frequency of the system Take $E = 2.1 \times 10^6 \,\text{kg/cm}^2$. (16)
- 12. (a) Determine the natural frequencies and nodes of the system shown in Fig. Q 12 (a).

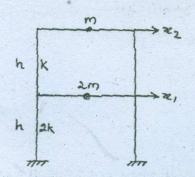


Fig. Q 12 (a).

Or

(b) Determine the natural frequencies and modes of the system show in Figure. Q.12(b)

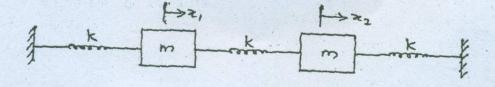


Figure. Q.12(b)

- 13. (a) (i) Explain the plate tectonics theory (8)
 - (ii) Explain the body waves and surface waves with neat sketch. (8)

Or

- (b) (i) Explain the seismograph with neat sketch.
 - (ii) Explain the characteristics of strong ground motions with neat sketch. (8)
- 14. (a) Discuss briefly about the response spectrum and design spectrum.

O

- (b) Define liquefaction. What are the factors that affect liquefaction? What are the measures taken to reduce the possibility of liquefaction?
- 15. (a) What is the effect of ignoring the contribution of masonry infill in the lateral load analysis of a multi-storey frame?

Or

(b) In what manner is the behavior of a soft storey construction likely to be different from a regular construction in the event of an earthquake?