|            | <br> |    |  |  |  |
|------------|------|----|--|--|--|
| Reg. No. : |      | ٠. |  |  |  |
|            |      |    |  |  |  |

Question Paper Code: 52781

B.E./B.Tech. DEGREE EXAMINATIONS, APRIL/MAY 2019.

Seventh Semester

Civil Engineering

CE 6701 — STRUCTURAL DYNAMICS AND EARTHQUAKE ENGINEERING

(Regulation 2013)

(Common to PTCE 6701 – Structural Dynamics and Earthquake for B.E. (Part-Time) Fifth Semester - Civil Engineering – Regulation 2014)

Time: Three hours

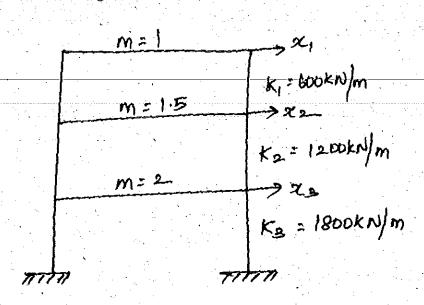
Maximum: 100 marks

(Use IS: 1893 - 2002, IS 4326 - 1993, IS 13920 - 1993 are permitted)

Answer ALL questions.

PART A —  $(10 \times 2 = 20 \text{ marks})$ 

- 1. List the various forms of damping.
- 2. Write the difference between static loading and dynamic loading.
- 3. Name the different modes of vibration.
- 4. Recall modal superposition method.
- 5. Rewrite the characteristic of earthquake.
- 6. Name the element of engineering seismology.
- 7. Compare Pinching effect with Bouchinger effect.
- 8. Predict the effect of earthquake in masonry structures.
- 9. Recall the causes of damage:
- 0. Write the concept of soft storey.


## PART B — $(5 \times 13 = 65 \text{ marks})$

- Free vibration test was conducted on an empty elevated water tank, through a cable attached to the tank, where a lateral force of 10 kN was applied it pulled the tank horizontally by 7.5 mm. The cable was suddenly cut and the resulting vibration was recorded. At the end of 4 complete cycles, the time was 2 sec and the amplitude was 5 mm. Determine.
  - Weight of the tank
  - Absolute damping
  - (iii) Damped frequency
  - Number of cycles required for the displacement amplitude to decrease to 0.6 mm.

Or

- (b) (i) Recall
  - (1) Free vibration
  - Degree of freedom
  - (3) Period.
  - (ii) State and explain D'Alembert principle.
- Derive the equation of Motion of Multi Degree of Freedom (MDOF) systems.

Determine the natural frequencies and mode shape for the shear building as shown in figure.



| 13. | (a) | Explain the following                                                                                                                             |          |
|-----|-----|---------------------------------------------------------------------------------------------------------------------------------------------------|----------|
|     |     | (i) Plate Tectonic theory (6)                                                                                                                     | )        |
|     |     | (ii) Elastic rebound theory. (7)                                                                                                                  | ) .      |
|     | • . | $\mathbf{Or}$                                                                                                                                     |          |
|     | (b) | (i) Recall the method for the estimation of magnitude and intensity of earthquake.                                                                | f<br>)   |
|     | •   | (ii) List the causes of earthquake. (6)                                                                                                           | )        |
| 14. | (a) | Explain the behaviour of reinforced cement concrete structure under earthquake forces. (13)                                                       | c<br>)   |
| •   | •   | $\mathbf{Or}$                                                                                                                                     |          |
|     | (b) | Summarize the evaluation of earthquake forces as per IS 1893. (13                                                                                 | )        |
| 15. | (a) | Explain the detailing of structural elements and confinement as per IS 13920-2016. (13                                                            | 3 ;<br>) |
|     | (b) | Describe the planning considering and architectural concepts as per IS 4326.                                                                      | :<br>)   |
| ·   |     | PART C — $(1 \times 15 = 15 \text{ marks})$                                                                                                       |          |
| 16. | (a) | Reproduce the guidelines for earthquake resistance design of masonry buildings.  Or                                                               | y<br>()  |
|     | (b) | A RC chimney idealized as a lumped mass cantilever is subjected at the top level to a step force of $F(t) = 4500$ kN, Mass = $7 \times 10^5$ kg/m | e<br>ı,  |
|     |     | $EI = 2 \times 10^{10}$ kN/m <sup>2</sup> . Determine its response by treating it as a 2 DOI system. The height of the chimney is 16 m. (15)      | F        |