Reg. No.								
			1	·	i i			Í

Question Paper Code: 90123

B.E./B.Tech. DEGREE EXAMINATIONS, NOVEMBER/DECEMBER 2019
Fourth Semester
Civil Engineering
CE 8403 – APPLIED HYDRAULIC ENGINEERING
(Regulations 2017)

Time: Three Hours

Maximum: 100 Marks

Missing data if any may suitably be assumed.

Draw sketches whenever necessary.

Answer ALL questions.

PART – A

 $(10\times2=20 \text{ Marks})$

- 1. Difference between pipe flow and open channel flow.
- 2. State the condition for best hydraulic section for a rectangular channel.
- 3. Define 'critical flow'.
- 4. What is called 'afflux' in gradually varied flow?
- 5. Define Froude's number.
- 6. What is called 'Hydraulic Jump'?
- 7. Give examples for Reaction Turbine.
- 8. What is meant by draft tube? Why it used?
- 9. Define Slip of a reciprocating pump.
- 10. What is an air vessel? State its functions.

(5)

9012	23	
	PART - B	(5×13=65 Marks)
11. a	a) The discharge of water through a rectangular char	nnel of width 10 m,
	is 25m ³ /sec. When the depth of flow is 2m, calcula	te:
	i) Specific Energy of flowing water.	(5)
	ii) Critical depth and critical velocity.	(4)
	iii) Minimum Specific Energy.	(4)
	a data (OR) a filanção (Yes Realiti	
ŀ	o) Derive a relation for Chezy's equation for a Unifor	m flow. (13)
12. ε	a) Determine the length of the backwater curve caus rectangular section of width 40 m and depth 2.5 m given as 1 in 11000. Take manning's $N = 0.03$.	
	(OR)	
t	 i) State the various assumptions to be made whil equation of gradually varied flow. 	e deriving the dynamic (7)
	ii) Explain the characteristics of $\rm M_2$ and $\rm S_2$ profile neat sketches.	es (drawdown curve) with (6)
13. a) Obtain an expression for the sequent depth and le	ngth of Hydraulic jump
	under rapidly varied flow conditions. (OR)	
b		
14. a)	assuming a speed ratio of 2, flow ratio of 0.6, diamet times the diameter of the runner and an overall eff the diameters, speed and specific speed of the turb	er of the boss equal to 0.35 iciency of 90%. Calculate
1.)	(OR)	!4
b)	i) Explain the working of Pelton wheel along with sketch.	its components with a neat (5)

ii) Derive an expression for determining the maximum hydraulic efficiency of a Pelton wheel.

15,	a)	dia vel	centrifugal pump having an outer diameter equal to two times the inner meter and running at 1000 rpm. works against a total head of 40 m. The ocity of flow through the impeller is constant and equal to 2.5 m/s. The vanes e set back at an angle of 40° at outlet. If the outer diameter of the impeller 500 mm and the width at outlet is 50 mm, determine:	
			Vane angle at outlet.	(5)
		,	Work done by impeller on water per second.	(4)
			Manometric Efficiency.	(4)
			(OR)	
	b)	i)	What is a jet pump? Explain the working mechanism of a jet pump with	
	υ ງ	-)	a neat sketch.	(8)
	Ş.,	::\	Bring out the effect of acceleration in suction and delivery pipes on	
alia Maka		11)	indicator diagram.	(5)
			PART – C (1×15=15 Max	rks)
			중요한 경기 기계	4 A
16.	a)	Wı	rite a brief note on the following :	
		i)	Steady flow and Unsteady flow	(4)
		ii)	Laminar Flow and Turbulent flow	(4)
		,	Characteristic curves for turbines	(7)
		111)	(OR)	
	b)	i)	A rectangular channel of width 4 m is having a bed slope of 1 in 1500.	(6)
			Find the maximum discharge through the channel. Take value of $C = 50$.	(0)
	:	ii)	Derive the conditions for a most economical section for a trapezoidal	(9)
1			channel.	(0)