061	106	123	-	F- Form
001	gir and	1 600 -		0 0

		 T	 	T	T	 I	T	
Reg. No.:								

Question Paper Code: 50621

B.E./B.Tech. DEGREE EXAMINATIONS, APRIL/MAY 2023.

Fifth/Sixth Semester

Environmental Engineering

EN 8592 – WASTEWATER ENGINEERING

(Common to: Civil Engineering)

(Regulations 2017)

Time: Three hours

Maximum: 100 marks

Answer ALL questions.

PART A —
$$(10 \times 2 = 20 \text{ marks})$$

- 1. Define 'Design period'.
- 2. What is population equivalent?
- 3. State the purpose of providing screen.
- 4. Mention the detention period for grit chamber and primary sedimentation tank.
- 5. Draw the symbiotic relation between bacteria and algae in stabilization pond.
- 6. What are extended aeration systems?
- 7. Write any two conditions favorable for disposal of sewage by dilution.
- 8. What causes soil dispersion?
- 9. State the objectives of sludge treatment.
- 0. Write the methods of dewatering of sludge.

PART B — $(5 \times 13 = 65 \text{ marks})$

11. (a) Explain with neat sketch, the principles of one pipe system and two pipe system. (13)

- (b) A 350mm diameter sewer is to flow at 0.35 depth on a grade ensuring a degree of self cleansing equivalent to that obtained at full depth at a velocity of 0.8m/sec. Calculate (i) the required grade, (ii) associated velocity and (iii) the rate of discharge at this depth. Assume required data. (13)
- 12. (a) Design a septic tank for the following data:

Number of people – 100

Sewage/capita/day -120 litres

Length: width -4:1

What would be the size of its soak well if the effluent from the septic tank is to be discharged in it? Assume percolation rate through soak well to be $1250 \text{ L/m}^3\text{/d}$.

Or

- (b) (i) Design a suitable rectangular primary sedimentation tank for treating sewage from a city, provided with an assured water supply system, with a maximum daily demand of 12 million litres per day.

 Assume suitable detention period and other necessary data. (8)
 - (ii) Describe the type of screens. (5)
- 13. (a) (i) Explain with neat sketch the working principle of a UASB. (7)
 - (ii) Discuss the maintenance problem in a membrane bioreactor. (6)

Or

- (b) Explain the working principle of SBR with neat sketch.
- 14. (a) (i) Discuss the factors affecting self purification of river. (8)
 - (ii) Explain with a sketch the oxygen sag curve. (5)

Or

(b) Explain with a neat sketch the types of sewage farming. (13)

15. (a) Mixed primary and secondary sludge of a wastewater treatment plant is thickened in the gravity thickener. Determine the volume reduction in the applied sludge after thickening of the sludge for the design data given below: (13)

Average influent flow - 5 MLD

Influent suspended solids – 200 mg/L

Influent BOD – 225 mg/L

Effluent BOD - 20 mg/L

Solids content of primary sludge - 3%

Solids content of secondary sludge - 0.9%

Solids content of thickened sludge - 4%

Assume necessary data.

Or

(b) Design a digestion tank for the primary sludge for the following data: (13)

Primary sludge flow - 20 MLD

Total suspended solids in primary sludge – 30000 Mg/L

Moisture content of digested sludge - 95%

Assume suitable data.

PART C —
$$(1 \times 15 = 15 \text{ marks})$$

16. (a) Explain the operational and maintenance aspects of an activated sludge process. (15)

Or

(b) Design a two stage high rate trickling filter for treating sewage of 4 MLD with a raw sewage BOD equal to 300 mg/L. Assume a recirculation ratio of 1.5 BOD removal in primary sedimentation tank as 35% and the final BOD of effluent as 20 mg/L. (15)

(13)