Reg. No. :

Question Paper Code : X10255

B.E./B.Tech. DEGREE EXAMINATIONS, NOVEMBER/DECEMBER 2020 Seventh Semester Civil Engineering CE 8703 – STRUCTURAL DESIGN AND DRAWING (Regulations 2017)

Time : Three Hours

Maximum : 100 Marks

Use of IS 456 – 2000, IS 800 – 2007, IS 875 (Part 3) – 2003, IS 3370 (part 2) – 2009, IS 3370 (Part 4) – 2008, IS 4998 – 2003, IS 6533 (Part 1) – 2010, IS 6533 (Part 2) – 2003. IRC 6 –2014, IRC 21–2000, and steel tables is permitted. Relevant data may be suitably assumed if found necessary.

Answer ALL questions

(5×20=100 Marks)

 a) Design the stem for a cantilever retaining wall to retain earth of 4m height. The backfill is horizontal. The unit weight of soil is 17kN/m³. Coefficient of friction between soil and concrete is 0.5. Safe bearing capacity of soil is 200kN/m². The angle of repose is 30°. Use M35 grade concrete and Fe415 grade steel.

(OR)

- b) Find the dimensions of a counterfort retaining wall to retain earth of 8 m height. The unit weight of soil to be retained is 16 kN/m³. Coefficient of friction between soil and concrete is 0.6. Safe bearing capacity of soil is 200kN/m². The angle of repose is 30°. Use M40 grade concrete and Fe415 grade steel. Check the stability of the wall.
- 2. a) Design a slab bridge using M35 grade concrete and Fe415 steel for IRC 70 loading. Consider the following data

Clear span - 7m

Carriage way - 12m

Thickness of wearing coat - 80 mm

Draw to a suitable scale the cross-section showing the reinforcement details.

(OR)

- b) Design an interior panel of a flat slab of panel size 5m × 5m supported by columns of size 450 mm × 450 mm. Provide suitable drop. Take live load as 3kN/m². Use M30 grade concrete and Fe 415 grade steel.
- 3. a) Design a circular tank 10 m diameter and 3 m height of wall Free board = 0.3 m. The tank rests on a firm ground. The walls are fixed at the base and free at the top. Use M30 and Fe415 rebars.

(OR)

- b) Design a rectangular underground tank for a capacity of 30 kilo litres. Use M30 and Fe415 rebars.
- 4. a) Design a i-section purlin for a steel roof truss for the following data

Span of roof	=	9m
Spacing of purlins along slope or truss	=	2m
Spacing of truss	=	3m
Slope of roof truss	=	1 vertical to 2 horizontal
Wind load normal to roof on the roof surface	=	1.5 kN/m^2
Vertical load from roof sheet	=	0.2 kN/m^2
Sketch the details of the roof.		

(OR)

- b) Design a bolted connection to transfer a factored end reaction of 120 kN from the beam (ISMB250) to the flange of a column (ISHB200). Use Fe410 grade steel and bolts of grade 4.6.
- 5. a) Design a welded plate girder of span 30 m to carry a live load of 40 kN/m. Use steel of grade Fe410. Avoid use of bearing and intermediate stiffeners. Draw the cross-section and longitudinal elevation of the girder.

(OR)

b) An ISMB500 frames into an ISHB300. The factored end shear force is 300kN and the factored end moment is 90 kNm. Design a suitable moment resistant connection assuming site welding.

X10255