\square

Question paper Code: X11321

B.E./B.Tech. DEGREE EXAMINATIONS APRIL / MAY 2021

Second Semester

Artificial Intelligence and Data Science

AD8252 - DIGITAL PRINCIPLES AND COMPUTER ORGANIZATION
 (Common to Computer Science and Data Science)

(Regulations 2017)

Time : 3 Hours

PART-A (10 x $2=20$ Marks)

1. State De Morgan's theorem for three variables.
2. Find the dual of function $F=x\left(y^{\prime} z^{\prime}+y z\right)$.
3. What is overflow in binary arithmetic?
4. Draw 4×16 decoder using two 3×8 decoders.
5. What are little-endian and big-endian method of data storage?
6. How does a processor differentiate between opcode and data.
7. Differentiate between microprogrammed and hardwired control units.
8. Justify the need of pipelining in a processor.
9. What is the need of replacement algorithms in memory management?
10. Specify the address and data bus width of $64 \mathrm{~K} \times 8$ memory chip. Justify the answer.

$$
\text { Part - B (} 5 \times 13=65 \text { marks })
$$

11. a) i) Simplify $F(A, B, C, D)=\sum(0,1,2,5,8,9,10)$ in sum of product and product of sum form by using K-map.
ii) Simplify the following Boolean expression by using K-map and draw the logic diagram for the simplified expression

$$
\begin{equation*}
F(A, B, C, D)=\sum(0,6,8,13,14) \text { and } d(A, B, C, D)=\sum(2,4,10) . \tag{7}
\end{equation*}
$$

OR
b) i) Simplify $F(A, B, C, D)=A C^{\prime} D^{\prime}+C^{\prime} D+A B^{\prime}+A B C D$ in sum of product and product of sum forms by using K-map.
ii) Simplify the following Boolean expression by using K-map and draw the logic diagram for the simplified expression.

$$
F=A B^{\prime} C+B^{\prime} C^{\prime} D^{\prime}+B C D^{\prime}+A C D^{\prime}+A^{\prime} B^{\prime} C+A^{\prime} B C^{\prime} D
$$

12. a) Design a four bit carry lookahead adder.

OR
b) Design 32 to 1 multiplexer using four 8 to 1 multiplexer and 2 to 4 decoder.
13. a) Explain the general addressing modes with examples.

OR

b) Explain the basic operation of a processor with different stages of instruction execution.
14. a) What are hazards in a pipelining? Explain different types of pipeline hazards with solutions?

OR
b) Explain the data path of a processor that supports the basic type of instructions.
15. a) Explain various cache mapping techniques in detail.

OR
b) i) What is the role of a DMA controller in a processor-based system design.
ii) What is an interrupt? Explain the interrupt-driven data transfer between processor and an IO device.

PART C ($1 \times 15=15)$

16. a) Implement the Boolean function $F(A, B, C)=\sum(0,1,4,6)$ by using multiplexer
(i) Using A as input
(ii) Using B as input
(iii) Using C as input.

Explain the design procedure in detail.

OR

b) Construct 2 Mx 32 bit memory by using 512 Kx 8 bit memory chips and a decoder. Illustrate the design with a neat diagram and explain it in detail.

