Question Paper Code : X11319

B.E / B. Tech DEGREE EXAMINATIONS APRIL / MAY 2021

Second Semester
Artificial Intelligence and Data Science
MA8252 LINEAR ALGEBRA
(Common to Computer Science and Business System)
(Regulations 2017)

Time: 3 Hours
Answer ALL Questions Maximum: 100 Marks
PART- A (10 x $2=20$ marks $)$

1. State the difference between Gauss Elimination and Gauss Jordan methods.
2. Is the system of equations $10 x+y+z=12 ; 2 x+10 y+z=13 ; x+y+5 z=7$ consisent? Justify.
3. Determine whether the vectors $\mathrm{v}_{1}=(1,-2,3), \mathrm{v}_{2}=(5,6,-1), \mathrm{v}_{3}=(3,2,1)$ form a linearly dependent or linearly independent set in R^{3}.
4. Let $V=R^{2}$ and $W=\{(x, y): x+y=5\}$. Is W a subspace of V ?
5. Show that $T: R^{2} \rightarrow R^{2}$ defined by $T\left(a_{1}, a_{2}\right)=\left(2 a_{1}+a_{2}, a_{1}\right)$ is linear.
6. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ be a linear transformation defined by $T\left(a_{1}, a_{2}\right)=\left(a_{1}+3 a_{2}, 0,2 a_{1}-\right.$ $4 a 2$. Write the matrix of the linear transformation.
7. Define inner product space.
8. Let V be an Inner product space then for all $x, y \in V$ and $c \in F$, show that

$$
\|c x\|=|c|\|x\| .
$$

9. Explain power method to find the dominant eigen value of a matrix.
10. Find the singular values of $=\left(\begin{array}{ccc}2 & 1 & -1 \\ -2 & -1 & 1\end{array}\right)$.

$$
\text { Part - B (5 x } 16=80 \text { marks })
$$

11. a) Solve the system using Gauss elimination method

$$
\begin{gather*}
x+2 y+z=3 \tag{13}\\
2 x+3 y+3 z=10 \\
3 x-y+2 z=13
\end{gather*}
$$

OR
b) Solve by Gauss Jordan method

$$
\begin{equation*}
3 x+y-z=3 ; 2 x-8 y+z=-5 ; x-2 y+9 z=8 \tag{13}
\end{equation*}
$$

12. a) Prove that $P_{n}(R)$, the set of all polynomials of degree at most n with real coefficient is a vector space under usual addition and constant multiplication of polynomial.

OR

b) Let W_{1} and W_{2} be subspaces of a vector space V. Prove that $W_{1} \cup W_{2}$ is a subspace of V if and only if $W_{1} \subseteq W_{2}$ or $W_{2} \subseteq W_{1}$.
13. a) A linear transformation $T: R^{2} \rightarrow R^{3}$ is defined by $T\left(x_{1}, x_{2}\right)=\left(x_{1}+x_{2}, x_{1}-\right.$ x_{2}, x_{2}). Verify dimension theorem.

OR
b) Let $A=\left[\begin{array}{lll}7 & -4 & 0 \\ 8 & -5 & 0 \\ 6 & -6 & 3\end{array}\right]$. Is A diagonalizable? Find an invertible matrix Q and a diagonal matrix D such that $D=Q^{-1} A Q$.
14. a) Find an orthonormal basis of \mathbb{R}^{3}, given that an arbitrary basis of \mathbb{R}^{3} is $v_{1}=(1,1,1), v_{2}=(0,1,1)$ and $v_{3}=(0,0,1)$ using Gram-Schmidt process. OR
b) Obtain the Least square approximation that fits the following data $(1,2),(2,3),(3,5)$ and $(4,7)$.
15. a) Using Jacobi Rotation method find the eigen values and eigen vectors of $A=\left(\begin{array}{cc}6 & \sqrt{3} \\ \sqrt{3} & 4\end{array}\right)$.

OR
b) Find the QR factorization of $A=\left(\begin{array}{ccc}1 & 1 & 0 \\ 0 & 1 & -1 \\ -1 & -1 & 0\end{array}\right)$.

