10/	61	123	-	Fr
1	- 1	Blanch Prints		

			Reg. No. :	
			Question Paper Code: 30029	
		В.	E./B.Tech. DEGREE EXAMINATIONS, APRIL/MAY 2023.	
			Fourth Semester	
			Artificial Intelligence and Data Science	્ર
			AL 3451 — MACHINE LEARNING	
			(Common to Computer Science and Business Systems)	
			(Regulations 2021)	
Tim	e : Tł	ree h	nours Maximum : 100	marks
			Answer ALL questions.	
			PART A — $(10 \times 2 = 20 \text{ marks})$	
1.	Wh	at do	you mean by hypothesis space?	
2.	List	few a	applications of Machine learning.	
3.	Wha	at is a	a gradient? How Gradient-Descent is useful in Machine learnin	g?
4.	Con	npare	and contrast linear regression and logistic regression.	
5.	Dist	tingui	ish between Bagging and Boosting.	
6.	Defi	ine vo	oting.	
7.	List	few a	activation functions.	
8.	Wha	at is a	a hyperparameter? List few hyperparameters.	
9.	Give	e the	use of Mc Neman's test.	
10.	Wha	at is n	neant by Bootstrapping?	
			PART B — $(5 \times 13 = 65 \text{ marks})$	
11.	(a)	Elal	borate on PAC Learning. Give an example.	
			Or	
	(b)	(i)	Discuss in detail about Bias-variance tradeoff.	(6)
		(ii)	Explain about VC dimension.	(7)

Explain about how optimal Hyperplane differs from other Hyperplanes. Elaborate on how SVM is able to achieve this?

- Explain the process of constructing CART (Classification And Regression Tree) with a suitable example.
- Explain about EM algorithm with suitable examples.

Or

- Explain the weighted K-nearest Neighbor algorithm with a suitable sketch.
- Discuss in detail about Backpropagation concept in ANN. 14. (a)

- Elaborate on:
 - Regularization
 - (ii) Drop-outs
 - Batch Normalization
 - Vanishing gradient
- Elaborate on cross-validation approach. (i) 15. (a)

30029

When do you decide on resampling? Explain.

(5)

Or

Represent and discuss the various methods of measuring Classifier performance.

PART C —
$$(1 \times 15 = 15 \text{ marks})$$

Perform a feedforward operation in a Multi-Layer Perception and conclude the result. This given MLP consists of an Input, one hidden, and an Output layer. The input layer has 4 neurons, the hidden layer has 2 neurons, the output layer has a single neuron, and the Learning rate is 0.8.

Cluster the following data set using the k-means algorithm with an initial value of objects 2 and 5 with the coordinate values (4,6) and (12,4) as initial seeds.

BJECTS	X-coordinate	Y-coordinate	
1	2	4	
2	4	6	
3	6	8	
4	10	4	
5	12	4	