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Biofuel production of neem wood bark (Azadirachta indica)
through flash pyrolysis in a fluidized bed reactor and its
chromatographic characterization
C. Sowmya Dhanalakshmi and P. Madhu

Department of Mechanical Engineering, Jansons Institute of Technology, Coimbatore, Tamilnadu, India

ABSTRACT
In this study, wood bark of neem tree (Azadirachta indica) is transformed
into liquid (bio-oil), solid (char) and gaseous products via pyrolysis method.
The main aim of this study is to analyze the effect of process parameters on
pyrolysis yield, physical and chemical characterization of bio-oil, char, and
gaseous products to find its feasibility as a commercial fuel as well as
chemical feedstocks. The flash pyrolysis experiments were carried out in
a laboratory scale fluidized bed reactor at a temperature ranging from 350
to 550°C, different particle sizes from 0.71 to 1.25 mm with a sweep gas
flow rate of 1.25 to 2.25 m3/hr. The highest liquid product yield was
obtained as 49.5 wt% at the pyrolysis temperature of 450°C, 1.0 mm particle
size and at the sweep gas flow rate 2.0 m3/hr. The obtained bio-oil, char,
and gaseous products were examined with FT-IR, GC-MS and Elemental
analysis methods. Based on the elemental analysis of the bio-oil, the calori-
fic value was found as 22.7 MJ/kg. GC-MS analysis of the bio-oil indicates
that it mostly consists of phenolic and oxygenated compounds with
alkanes, alkenes, ketones, and carboxylic acids. The pyrolysis gas fraction
contains hydrogen, methane, oxygen, carbon dioxide, and carbon monox-
ide. The obtained bio-oil and gas can be used as a bio-fuel and bio-oil can
be used as a valuable chemical feedstock. The char obtained are carbon-rich
and are nearly equal to the standard fuel properties.

ARTICLE HISTORY
Received 22 February 2019
Revised 29 April 2019
Accepted 18 May 2019

KEYWORDS
Wood bark; Azadirachta
indica; pyrolysis; fluidized
bed; biofuel;
characterization

Introduction

The increase in energy demands and the reduction of fossil fuel reserves along with environmental
concerns have made it urgent to look for alternative and renewable energy sources (Durak and
Genel 2018). Biomass has drawn great attention as a clean and alternative energy source emitting
relatively low CO2 levels, and a negligible amount of sulfur (Durak 2018). Biomass is a complex
material, mainly consists of cellulose, hemicellulose, lignin, and inorganic salts. It can be trans-
formed into bio-oils or high calorific value products via thermochemical processes such as liquefac-
tion, pyrolysis, and gasification. The bio-oil is a promising contestant to replace fossil fuels (Madhu,
Manickam, and Kanagasabapathy 2016). It can be used for the generation of heat, power and value-
added chemicals. Pyrolytic bio-oil is known to be acidic, viscous, thermally unstable and contains
high amounts of oxygenated compounds (Madhu, Livingston, and Kanagasabapathy 2018). Char or
pyrolyzed charcoal is the secondary product obtained from the pyrolysis. It is a fine-grained porous
product. Wood, agricultural crops and their residues are the common sources of biomass. Char or
pyrolyzed charcoal is the secondary product obtaining from the pyrolysis. It is a fine-grained porous
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product. It is a main industrial fuel, which can be used for the production of activated carbon and
other value-added chemicals. When it is applied as a soil amendment, it removes net carbon dioxide
from the atmosphere. When added with fertilizer, it provides an improved habitat for soil organisms
by improving nutrient retention (Yu, Steele, and Ruan 2010). The properties of the char are highly
variable and depend on the type of raw biomass material and pyrolysis conditions. Different
researchers have produced bio-oil products from wood, seeds, stems and de-oiled cakes by pyr-
olysis. Fast pyrolysis of pine bark and oak bark has been conducted by Ingram et al. (2008). The bio-
oil produced from pine bark is having the heating value of 18.7 MJ/kg which is equal to that of bio-
oil produced from pine wood. Whereas, the heating value of the oak bark pyrolysis oil is 19.0 MJ/kg
which is more than that of bio-oil derived from oak wood. The literature suggested that both the
bio-oils can be used as a low-grade bio-fuel. Glycyrrhiza glabra L. was transformed into liquid and
solid products with catalysts (H3BO3, ZnO) and without catalyst at 250°C, 300°C, and 350°C by
using the hydrothermal liquefaction method (Durak 2019). During this research, the highest
conversion rate was obtained as 35.73 wt% in catalytic pyrolysis (H3BO3 as a catalyst) at 350°C.
According to the elemental analysis, the energy values of bio-oil products ranged between 21.87 and
31.78 MJ/kg and the energy values of solid products ranged between 16.22 and 18.28 MJ/kg. Şensöz
(2003) conducted the slow pyrolysis experiment on pine bark (Pinus brutia Ten.). The effects of
temperature, particle size, feed rate, sweep gas flow rate and heating rate on the yields and
compositions of the bio-oil were investigated by various researchers. Durak, Genel, and Tunç
(2019) conducted the pyrolysis experiments on black cumin seed cake and transformed into liquid
and solid products. According to their results, the liquid products obtained at the end of the
experiments are having higher heating values between 32.44 and 36.19 MJ/kg. The GC-MS analysis
of the seed cake oil contains almost 70 pieces of compounds consisting of monoaromatics,
aliphatics, oxygenated compounds with different properties. Nayan, Kumar, and Singh (2013)
studied the pyrolysis behavior of neem seed in semi-batch reactor to determine particularly the
effects of pyrolysis temperature and heating rate on the yield and their chemical compositions. The
maximum bio-oil yield of 38 wt% was obtained at the temperature of 475°C at the heating rate of
20°C/min. Depending upon the operating conditions, the pyrolysis can be classified into conven-
tional slow pyrolysis, fast and flash pyrolysis. Conventional slow pyrolysis can be suitable for the
production of char which is performed at a lower heating rate with longer residence time. Fast and
flash pyrolysis systems are well suitable for the production of liquid fuels. The quantity of liquid,
char and gas products depends very much based on the pyrolysis techniques used on the reaction
parameters. Due to the longer residence time, slow pyrolysis is not attractive for commercial
applications of liquid fuel production. Nowadays the preferred technology for the liquid fuel
production is fast or flash pyrolysis at a higher temperature around 400–800°C and at shorter
residence time (Demirbas 2004). Pyrolysis of Xanthium strumarium has been performed by Durak
(2016) in a fixed-bed tubular reactor with boron minerals at three different temperatures ranging
from 350°C to 550°C with a heating rate of 50°C/min. In this research, pyrolysis temperature is
found to be the main factor affecting the conversion into solid, liquid, and gaseous products.

Azadirachta indica is commonly known as neem tree. It is a tree in the mahogany family
Meliaceae. It is a species of genus Azadirachta native to Indian subcontinents. It is naturally
grown in tropical and semi-tropical regions. It is the most valuable tree that has increased worldwide
significance due to its multiple uses. Neem trees are considered to be a marvelous tree in India
because of their abundant valuable uses. The tree is used in multiple ways to the human. The leaves
are dried and placed in cupboards to prevent insects. Neem products are believed by Siddha and
Ayurvedic medical practitioners to be antifungal, antibiotic, antibacterial, antiviral, anthelmintic,
contraceptive, and sedative. The neem wood has been separated from its bark and is mainly used for
carpentry works. The wood bark is bulky to carry, it has a poor shelf life. Since there is no market
value, these barks are used for cooking purposes. The open burning of these barks has a severe effect
on the environment. So proper recycling is essential and it should be identified. The literature
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available for wood bark energy conversion technique is minimum and no work has been done on
neem bark pyrolysis system.

This work focuses on pyrolysis characteristics of wood barks of Azadirachta indica for the
production of biofuels. Fluidized bed flash pyrolysis of the samples were carried out with different
temperature ranges from 350 to 550°C, different particle sizes from 0.71 to 1.25 mm with a sweep gas
flow rate of 1.25 to 2.25 m3/hr in order to examine their effect on pyrolysis yield. The effect of
various parameters on pyrolysis yield and volatiles were also studied. The obtained biofuel products
were characterized for different physical and chemical properties using FT-IR and GC-MS to find
out the suitable applications.

Method

Materials

The wood barks were collected from Tirunelveli, India. The barks were crushed, dried in open atmo-
sphere as well as in a vaccum oven at 40°C. the samples were ball-milled and separated by sieve shaker to
obtain four different sizes- 0.6, 0.71, 1.0 and 1.25 mm. Table 1 shows the proximate, ultimate and
lignocellulosic content of the wood bark sample and obtained char. The ultimate analysis of the biomass
sample was performed by using Vario EL-III, Germany Elementar analyzer. Traditional wet chemistry
method is adopted to find out the lignocellulosic content of the sample and it measures the weight
difference after treatments using KOH and H2SO4. The sample contains more fractions of fixed content
and volatile matters which gives a hope for more biomass conversion rate. The biomass samples may be
environmental friendly due to its low fractions of nitrogen and sulfur.

Reactor setup

The fluidized bed reactor used for the present study is the same as that used in a previous paper by
the literature (Madhu, Manickam, and Kanagasabapathy 2015) and further is explained in this
section. The reactor consists of a stainless steel tube of 1.0 m height with 50 mm inner diameter.
It was heated by using 2 kW electrical resistance heater with ammeter and voltmeter setup. K type
thermocouples located at five different points are used to measure the temperature of the reactor.
The temperature inside the reactor was controlled by a PID controller. The reactor is insulated with
mineral wool and Chromel–Alumel. Nitrogen gas is used as an inert gas for fluidization. Initially,

Table 1. Proximate and ultimate analysis of the biomass and char.

Parameters Biomass Char Standard

Proximate analysis in wt%
Volatile matter 69.8 23.13 ASTM D3175
Fixed Carbon 15.7 66.39 By difference
Moisture Content 10.3 4.36 ASTM D3173
Ash 4.2 6.12 ASTM D3174

Ultimate analysisa in wt %
Carbon 41.51 41.51 ASTM D5373
Hydrogen 7.30 7.30 ASTM D5373
Nitrogen 5.41 5.41 ASTM D5373
Oxygen 45.36 45.36 By difference
Sulfur 0.42 0.42 ASTM D5373
H/C molar ratio 2.096 2.096 -
O/C molar ratio 0.821 0.821 -
Empirical formula CH2.9N0.11O0.82 CH2.9N0.11O0.82 -

Lignocellulosic content in wt%
Cellulose (± 0.05%) 17.58 - -
Hemi-cellulose (± 0.05%) 42.56 - -
Lignin (± 0.05%) 39.86 - -

aDry ash basis

ENERGY SOURCES, PART A: RECOVERY, UTILIZATION, AND ENVIRONMENTAL EFFECTS 3



compressed air was admitted till the reactor bed reaches the desired temperature and then the
nitrogen gas replaces the air. The nitrogen flow rate was measured with the help of rotameter
attached outside the reactor. The fluidizing gas velocity was maintained two times greater than the
minimum fluidization velocity of 0.11 m/s. The nitrogen flow rates used for this study are 1.25, 1.75,
2.0 and 2.25 m3/hr. The sand particle used for all the experiments was 0.75 mm. The biomass
samples were fed into the reactor through screw feeder which is attached at the height of 600 mm
with the reactor through feeding port. When the reactor reaches the desired pyrolysis temperature,
the samples were into the reactor at the rate of 30 g/min. The released volatile compounds from the
reactor were quenched by the condenser by the flow of cooled water maintained at 10°C. The
condensed bio-oil was collected in a flask and weighed. The char was collected from the bottom of
the reactor and weighed. The conversion of biomass sample to bio-fuels on weight ratio was
calculated by following the total amount of bio-oil collected per batch/total amount of biomass
sample fed) × 100. The yield of char was calculated by (the total amount of char collected/total
amount of biomass sample fed) × 100. The uncondensable gas released during the reaction was
calculated by the overall material balance.

Experimental procedure

The aim of the first series of the experimental work is to find out the effect of process temperature on
pyrolysis yield. For this, the experiments were conducted at different temperatures of 350, 400, 450,
500, 550°C at the constant particle size of 0.71 mm and at the sweep gas flow rate of 1.75 m3/hr.
The second part of the experiment is conducted to determine the effect of particle size on pyrolysis
yield. For this purpose the experiments are conducted with four different particle sizes of 0.6, 0.71,
1.0, 1.25 mm with the optimum pyrolysis temperate of 450°C and at the sweep gas flow rate of
1.75 m3/hr. In order to study the effect of sweep gas flow rate during pyrolysis reaction, the third
series of experiments are conducted by varying the flow rate as 1.25, 1.75, 2.0, 2.25 m3/hr at the
pyrolysis temperature of 450°C and at the particle size of 1.0 mm. All experiments were performed
thrice and the average value was taken into consideration. The average yields are given within the
error of less than ± 2 wt%. Table 2 shows the experimental conditions of the present study.

Characterization methods

BROOKFIELD LV-DV-II Pro viscometer and Penskey Martein closed cup apparatus were used to
measure the viscosity and flash point of the bio-oil sample. Parr-6772 calorimetric thermometer was used
tomeasure the calorific value of the bio-oil. The density was measured by weighing the known volume of
the sample. Digital pH meter was used to measure the pH value of the bio-oil. Elementar Vario EL-III
instrumentations with WinWar software was used to measure the components of the bio-oil and char.
Fourier transform infra-red spectroscopy (FT-IR) was used for the analysis of chemical investigations of

Table 2. Experimental conditions and pyrolysis yield.

Case Temperature in °C Particle size in mm Sweep gas flow rate in m3/hr

Run 2 400 0.71 1.75
Run 3 450 0.71 1.75
Run 4 500 0.71 1.75
Run 5 550 0.71 1.75
Run 6 450 0.6 1.75
Run 7 450 0.71 1.75
Run 8 450 1.0 1.75
Run 9 450 1.25 1.75
Run 10 450 1.0 1.25
Run 11 450 1.0 1.75
Run 12 450 1.0 2.0
Run 13 450 1.0 2.25
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the bio-oil. For this Bruker Optik GmbH Tensor27 by Opus version 6.5 was used at resolution 4 cm−1

among 4000 to 400 cm−1. ThermoMS DSQ II Gas chromatography–mass spectrometry was used for the
analysis of volatile and semi-volatile of the bio-oil and gas. The GC conditions, column oven tempera-
ture, the column used, and MS conditions are given in Table 3.

Results and discussion

Effect of temperature on product yield

During pyrolysis, biomass undergoes end to end primary and secondary reactions relating heat andmass
transfer mechanism. Decomposition of cellulose, hemicelluloses, and lignin present in the biomass
occurs primarily which leads to the formation of primary products and intermediates. These intermedi-
ate species further undergoes secondary cracking. The basic function of temperature is to supply
necessary heat for the decomposition of biomass linkages. The pyrolysis experiments were conducted
by varying the temperature values (350, 400, 450 500 550°C) at a constant particle size of 0.71 mm and at
constant sweep gas (N2) flow rate of 1.75 m3/hr. Obviously, the optimum temperature in this condition
for maximum bio-oil is in the range of 450°C. Figure 1 shows the variation of percentage mass of bio-oil,
char and gas products in relation to the mass of biomass feed at different bed temperatures, different
particle sizes, and different sweep gas flow rates. When the temperature increases from 350 to 550°C, the
yield of bio-oil increases from 33.6 wt% to 36.4 wt%. The result shows that as the reactor temperature was
increased the bio-oil yield also increases up to 450°C. After this temperature, the bio-oil yield was
decreasing. On the other hand, the yield of char is reduced from 38.2 wt% to 24.3 wt% and the gas yield is
increased from 28.2 wt% to 39.3 wt%. At a lower temperature of (<350°C), the bio-oil yield was only 33.6
wt% with a higher char yield of 38.2 wt%. The decomposition of the feed particle at a lower temperature
which occurs at heteroatomwithin the structure gives more char yield (Tsai, Lee, and Chang 2007). At an
elevated temperature, the massive breakup of biomass material causes high molecular dislocation and
produces various types of chemical components. When the temperature is maintained less than 350°C,
the conversion efficiency of biomass into bio-oil is very low. Huge conversion of biomass to bio-oil and
its fragments occur within the temperature range of 400–500°C. Increase of temperature gives additional
energy to break the biomass structure as the conversion efficiency is increased. At a pyrolysis temperature
of 450°C, because of strong cracking the yield of bio-oil will be a maximum of 42.6 wt% and the yield is

Table 3. GC-MS conditions.

Instrument Thermo MS DSQ II

GC conditions
Column oven temperature 70°C
Injection mode Split
Injection temperature 200°C
Spit ratio 10
Flow control mode Linear velocity
Column flow 10 ml/min
Carrier gas Helium

Column oven temperature progress
Rate Temperature in °C Hold time in m
- 70 5
10 250 7

Column DB-35
Length 30 m
Diameter 0.25 mm
Film temperature 0.25 µm

MS Conditions
Ion source temperature 200°C
Interface temperature 250°C
Start m/z 50
End m/z 650
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decreased to 36.4 wt% when the temperature is beyond 450°C due to the secondary cracking reactions of
the pyrolysis vapor. According to Sohaib, Muhammad, and Younas (2017) with the increase in pyrolysis
temperature, both bio-oil and gaseous yields are increased due to the secondary decomposition of char
residues. Many researchers also studied the effect of temperature on product yields to establish the
optimum temperature for maximum bio-oil yield. The yield of palm shell was reported by Abnisa et al.
(2011) who confirmed the yield of 47.3 wt % at 500°C. Pütün, Özcan, and Pütün (1999) reported that
500°C as the maximum yield temperature for hazelnut shells with a yield of 23.1 wt%. Similarly, Madhu,
Livingston, and Kanagasabapathy (2018) reported that at a temperature of 450°C, the maximum bio-oil
yield of 50.6 wt% was obtained from the flash pyrolysis of lemongrass.

Effect of particle size on product yield

Generally, the useful size of the feed particles may vary depending upon the type of biomass and type
of pyrolyzer. Understanding the effect of particle size during pyrolysis product distributions can be
explained by the conductivity of the samples. Biomass being poor thermal conductor poses heat
transfer difficulties during pyrolysis. The yield of pyrolysis products depends on the size of the feed
particles. The bio-oil yield is significantly increased and the gas yield is decreased when the size of
the particle is increased from 0.6 mm to 1.0 mm. The result shows that the bio-oil yield is increased
from 36.5 wt% to 45.3 wt%. On the other hand char and gas yield is decreased from 29.3 wt% to 24.9
wt% and 34.2 wt% to 29.8 wt%, respectively. The yield of bio-oil yield is decreased to 39.6 wt%, when
the particle size is increased from 1.0 mm to 1.25 mm. Generally, smaller particle sizes are preferred
in pyrolysis systems as they can heat up uniformly than larger particles. The poor heat and mass

a) Effect of temperature b) Effect of particle size

c) Effect of sweep gas flow rate
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Figure 1. Effect of process parameters on pyrolysis yield: (a) effect of temperature, (b) effect of particle size, and (c) effect of sweep
gas flow rate.
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transfer restrictions to the inner surfaces of the larger particles causes low average particle tempera-
tures which yields lower bio-oil and the particle size of 1.0 mm is suitable for the production of
higher bio-oil yield. Based on these results, particle size has an important parameter during pyrolysis
product distributions. Biomass structure is another important parameter to explain the product
distributions. Cell structure may affect the pyrolysis behavior, such as the release of alkaline earth
metallic species.

Effect of sweep gas flow rate on product yield

To find out the effect of sweep gas flow rate on pyrolysis product yields, the experiments were
conducted at four different sweep gas flow rates of 1.25, 1.75, 2.0, 2.25 m3/hr. The pyrolysis
temperature and particle size for this set of experiments were kept constant as 450°C and 1.0 mm,
respectively, which is obtained from the optimization of the first and second group of experi-
ments. The yield of bio-oil is increased from 40.6 wt% to 49.5 wt% when the flow rate of nitrogen
is increased from 1.25 to 2.0 m3/hr and further the yield is decreased to 42.6 wt% when the flow
rate of nitrogen is increased to 2.25 m3/hr. At the same time, the yield of gas is decreased from
34.9 wt% to 25.2 wt%. With an increase in the gas flow rate from 1.25 m3/hr to 2.25 m3/hr,
a continuous increase in the char yield has been observed from 24.5 wt % to 28.5 wt%. From this
study, a maximum bio-oil yield of 49.5 wt % was obtained at the sweep gas flow rate of 2.0 m3/hr.
According to this study, the fluidization condition and vapor residence time directly affect the
yield of bio-oil, char, and gases (Dhyani and Bhaskar 2018). The sweep gas flow rate amplified
the movement of the biomass particles inside the reactor and the mixing between the sand
material and biomass becomes vigorous. The enhanced mixing of biomass with sand particles
improves the heat transfer rate which enhances the volatile release. But the shorter residence time
leads to the lower prospects of the secondary tar cracking. In this work, a maximum yield of bio-
oil, char, and gas of 49.5, 28.5 and 34.9 wt% were attained at the sweep gas flow rate of 2.0, 2.25
and 1.25 m3/hr respectively.

Product characterization

Characterization of the bio-oil
Table 4 shows the comparison of the physical properties of neem bark and other pyrolysis bio-oils
obtained from different biomass materials and diesel. The pyrolysis bio-oil obtained from neem bark is
highly oxygenated with a maximum oxygen content of 41.01 wt%. The obtained bio-oil has two layers,
the upper layer is known as the fuel layer, and the bottom layer is known as the oily water layer. The
bottom layer is a mixture of water and carbohydrate derived organic liquid which is the source of
oxygenated compounds present in the biomass sample. The higher flash point of the bio-oil indicates that
it can be stored safely at room temperature. The presence of acidic acid in the bio-oil was confirmed by
the lower pH value. Since it can be corroded with steel, aluminum and nickel-based materials, it should
be treated before any specific applications. The calorific value of the bio-oil is 22.7 MJ/kg which is good
enough for the bio-oil produced from an agricultural waste. The higher density of the pyrolytic bio-oil
can affect the fluid atomizer and it can be reduced by blending with some other transportation fuels.

Figure 2 shows FT-IR spectrum of the bio-oil. The bio-oil contains different organic compositions
including aromatic, aliphatic and oxygenated functions. In the FT-IR spectrum, OH stretching vibra-
tion band was monitored between 3400–3200 cm−1 indicate the polymeric hydroxyl compounds and
alcohols in the bio-oil. The C-H bonds between 3000–2850 cm−1 indicate the presence of alkyls. The
absorbance peak between 2260–2240 represents C ≡ N stretch indicates nitriles in the bio-oil. The
C-C stretching between 1600–1585 cm−1 indicates the aromatics. The – CH2 bending between 1445
and 1400 cm−1 indicates the alkanes group in the bio-oil. The C-O absorbance peak between
1375–1000 cm−1 indicates the presence of alcohols, carboxylic acids, esters, ethers, and the absorbance
peak between 1000 and 650 cm−1 represents = C-H bending vibrations indicates the alkanes.
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The compounds present in the bio-oil were known by comparing the chromatogram obtained
with standard chromatogram data available in the library. From GC-MS analysis it has been
observed that the bio-oil product contains the mixture of various compounds such as phenolics
and other aromatic compounds. Cellulose and hemicelluloses of the biomass material are the sources
of these aromatic and oxygenated compounds. Different types of compounds such as phenols,
alkanes, alkenes, fatty acids, and esters were identified. Phenol, trimethylamine, 2-methylphenol,
octadecanenitrile and stearic acid, methyl ester are identified with higher peak area the total area
percentage of the phenol and its derivatives are 30. Phenols are used in the synthesis of antioxidant
compounds. The main uses of phenol, consuming two-thirds of its production, involve its conver-
sion to precursors for plastics. Octadecanenitrile is used as a chemical intermediate for fatty amines
and derivatives. Trimethylamine is a colorless, flammable tertiary amine. At low concentrations, it
has a strong fishy odor and has an ammonia-like odor at higher concentrations. It is used in the
synthesis of choline, herbicides, tetramethylammonium hydroxide, resins, dye leveling agents and
a number of basic dyes. Table 5 shows the various chemical compounds present in the bio-oil with
its properties and uses.

Characterization of char
The volatile matter present in the char is 23.13 wt%. According to Antal and Grønli (2003) it is a measure
of carbonization that is directly proportional to the production temperature. Normally the volatilematter
present in the char can vary from 40 to 5 % or less. The volatile matter content of the char for the
domestic cooking is recommended as 20–40%. The char produced in this study has reasonable volatile
matter content. The higher volatile matter present in the char leads easy ignition but may burn with
a smoky flame (Misginna and Rajabu 2014). According to Mythili and Venkatachalam (2015) the fixed
carbon content in the char may vary from 50 to 95%. As reported by Antal and Grønli (2003) the fixed
carbon content in the charcoal may in the range of 65–90%. The fixed carbon present in the char is 66.39
wt%. By increasing the carbonization temperature, the fixed carbon content in the char can be increased.
The moisture content present in the char is 4.36 wt% which is lesser than the recommended (<7%)
moisture content of the charcoal. According to McLaughlin et al. (2009) the particular biomass used can
affect the characterization and usability of the char. The char has the ash content of 6.12 wt% which is
slightly higher than the prescribed limit which means that the usage of these char as a fuel, generates
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Figure 2. FT-IR spectrum of the bio-oil.
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more clinkers that will negatively affect the system performance. During pyrolysis decrease in volatile
matter content increase the percentage of fixed carbon. Table 1 shows the major variation in carbon and
oxygen content and minor variation in hydrogen, nitrogen and sulfur content of the obtained char. The
drastic decrease in volatile content indicates the higher conversion of biomass to bio-oil (Nayan, Kumar,
and Singh 2013).

Gas compositions
The major component of the pyrolysis gas comes out during pyrolysis were carbon monoxide and
carbon dioxide. The percentage of CO2 in the gas was in the range of 6.54 to 8.11% at the higher and
lower temperature spectrum of 550°C and 350°C. At lower temperature, the percentage of the CO2 is
7.17% and it is maximum at the temperature of 500°C. The percentage of CO2 follows increase-
decrease patter with increase the temperature. The concentration of CO is increased with increase in
temperature upto 500°C and then it is decreased. Menendz et al. (2007) reported that the reverse
boudouard reaction between the CO2 and char may be the reason for increase in CO concentration
at higher temperature. The concentration of CO was in the range of 2.07–3.45%. The concentration
of Methane and hydrogen increased sharply with the higher temperature. The methane and hydro-
gen content was in the range of 0.12 to 2.26% and 1.62 to 7.92%, respectively. According to Kaupp
(1984) the hydrogen and CO content in the gas are a strong function of temperature. Table 6 shows
the various gas fractions at different operating conditions.

Conclusion

In this study, flash pyrolysis experiments on Wood bark of neem tree (Azadirachta indica) were
performed in a fluidized bed reactor under a nitrogen atmosphere which is a promising feedstock
for the production of bio-fuel. During this pyrolysis, the highest bio-oil yield of 49.5 wt% was
obtained at the temperature of 450°C with a particle size of 1.0 mm and at the sweep gas flow
rate of 2.0 m3/hr. Reliable with the previous studies, the highest conversion is obtained at the
temperature of 450°C which is deliberated to be the consequence of the rapid devolatilization of
cellulose and hemicellulose. During this pyrolysis experiment, the temperature is considered as
the most significant parameter to determine the product distributions. The heating value of the
bio-oil was more than half the value of gasoline and diesel which is good enough for an
agricultural waste. The functional group present in the pyrolysis oil is similar to the other bio-
oil products. The bio-oil was fractionated into chemical classes by gas chromatography. Through
GC-MS, it was found that the bio-oil derived from neem bark was a mixture of various organic
compounds of carbons with the chain length in the range of C5-C47 with a lot of oxygenated
aromatics (ArO) which is similar to gasoline and diesel fuels. The bio-oil contained significant
amounts of complex organic mixtures with phenols, alkanes, alkenes, fatty acids, esters, resulting
in low pH values and high oxygen contents which can be used as a feedstock for chemical
industries. The physical characteristics of the bio-oil were in the range of moderate quality fuels

Table 6. Gas fractions at different operating conditions.

Composition of gas

Temperature °C Particle size mm Sweep gas flow rate m3/hr

350 400 450 500 550 0.6 0.71 1.0 1.25 1.25 1.75 2.0 2.25

Hydrogen (%) 1.62 2.35 4.35 6.22 7.92 0.97 3.33 5.68 4.21 3.45 5.22 7.23 5.21
Methane (%) 0.12 1.25 1.89 1.94 2.26 0.9 1.36 2.22 1.92 3.21 3.01 2.52 2.72
Oxygen (%) 1.21 1.16 0.91 0.88 0.81 0.91 1.11 1.56 1.26 2.45 1.56 1.27 1.24
Carbon dioxide (%) 7.17 7.52 8.11 8.23 6.54 7.56 9.32 12.31 10.34 6.33 8.56 10.96 8.01
Carbon monoxide (%) 2.36 2.82 2.99 3.45 2.07 0.82 1.56 3.21 1.25 1.55 3.42 4.63 3.96
Nitrogen (%) 87.52 84.9 81.75 79.28 80.4 88.84 83.32 75.02 81.02 83.01 78.23 73.39 78.86
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and other pyrolysis bio-oils. The pyrolysis gas can be used as a gaseous fuel. The gas fraction is
found to have hydrogen, methane, oxygen, with higher rate of carbon dioxide and carbon
monoxide. The char produced from this study has an acceptable volatile matter and fixed carbon.
The moisture content of the char is minimum when compared with the biomass material which
enhances the energy content. Hence, it can be used as an energy source.
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