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At present, the nanofluids are being considered to be new emerging area of research which has lot of ben-
efits in heat transport applications over traditional heat transport fluids. Since, nanofluids showcases an
enhanced thermo-physical properties over the conventional fluids, they give better performance when
compared with conventional working fluid. The current study evaluates the thermophysical properties
of CeO2/water nanofluids by experimentally by varying the temperature and volume concentrations.
The volume concentration of CeO2/water nanofluids is varied in five different values ranging from 0.01
to 0.3. The elemental composition of cerium oxide nanoparticles is analysed with the aid of EDX. The sur-
face characteristics of the CeO2 nanoparticles are explored with scanning electron microscope. It is eval-
uated that thermal conductivity, co-efficient of viscosity and co-efficient of density of CeO2/water
nanofluids with 0.3 vol fractions have been increased by 35.97%, 1.76% % and 1.56% respectively when
compared to that of 0.01 vol concentration. It has also been evaluated that specific heat of CeO2/water
nanofluids is decreased by 5% with 0.3 vol concentrations when compared to 0.01 vol concentrations.
� 2021 Elsevier Ltd. All rights reserved.
Selection and peer-review under responsibility of the scientific committee of the International Confer-
ence on Advances in Design, Materials and Manufacturing.
1. Introduction

Heat transport fluids such as water based fluids, oil, and glycols
are having deprived thermo physical properties due to which the
thermal performance enhancement cannot be improved to optimal
level to meet the current requirements of the solar collectors. In
order to meet these requirements, nanofluids could be employed
as operational fluids in place of conventional fluids to increase
the absorption of solar energy. Thermal conductivity, specific heat,
effective density, co-efficient of dynamic viscosity, and capacity are
the important factors which controls their heat shifting character-
istics [1,2]. Further, the thermal properties of nanofluids are relying
on size of particle, volume fraction, operating temperature, etc.
Therefore, it is essential to assess the temperature dependent prop-
erties of nanofluids as they are important for estimation of heat
transport coefficient.
The term ‘nanofluid’ had been first coined by Choi [3] as men-
tioned in his work. The nanoparticles disbanded in the base fluid
show enduring stability and greater thermal conductivity when
compared to micro-level particles in addition to little pressure
drop. A lot more investigations have been conceded in order to
acknowledge the variation in heat conductivity in the past. It is
found that the assimilation of nanoparticles in a base fluid aug-
ments their heat transport property owing to the Brownian motion
which influences the thermal behavior of nanofluid [4,5,6]. Masuda
et al. [7] performed the experiments for exploring the opportunity
of shifting the characteristics of conventional heat transport fluids
by disbanding nano level particles such as Al2O3 and TiO2 particles
with the water based fluid. It was observed that the enhancements
in the effective thermal conductivities were found to be 32.0% and
11.0%, respectively for the fluids containing of 4.3% volume
concentration.

Murshed et al. [8] accomplished an experiment to gauge the
thermal conductivities by using dissimilar shaped nano-TiO2 parti-
cles in water by hot-wire technique. It was perceived that the heat
uids for
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Fig. 1. Cerium oxide nanoparticles.

Table 1
Thermo-physical properties of CeO2 nanoparticles.

S.No Properties CeO2 nanoparticles

1 Density 7.132 g/cm3

2 Specific heat 460 J/kgK
3 Thermal conductivity 12 W/mK
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conductivity augmented with the rise of particle’s volume percent-
age. Further, the particle’s shape, size, pH value and viscosity are
other features considered which manipulates the intensification
of heat conductivity of the nanofluids. Wang et al. [9] revealed that
11.3% enrichment in the thermal conductivity, with 0.01% volume
fraction of CNT in water. Beck et al. [10] experimented with ethy-
lene glycol/alumina nanofluids within the temperature of 298 K to
411 K and revealed ultra enrichment in thermal conductivity of all
their particle concentrations.

Lee et al. [11] acknowledged that the co-efficient of viscosity
and thermal conductivity are linearly related properties with
increase in the nanoparticle concentration when evaluated Al2O3/
water nanofluids. Li et al. [12] premeditated the collective effects
of deviation in pH and surfactant on copper based nanofluids and
reported that the heat conductivity is a having a direct association
with the mass fraction of nanoparticle, proportion of surfactant
and nanofluid’s pH value. They also reported that appropriate sur-
factant and best possible pH value are the key factors in improving
the heat conductivity of base fluids for heat shifting purposes. Min-
tsa et al. [13] acknowledged that the comparative amplification in
thermal conductivity was a principal factor at the modest
temperatures.

In another work, Murshed et al. [14] determined that the nano-
fluid’s thermal conductivity is an outcome of particle shape, size,
particle fraction, temperature and interfacial layer. Gupta et al.
[15] established that the haet conductivity of nanofluid relies on
many factors namely, particle mean size, shape, base fluid, pH
value, additives, clustering, and temperature of the nanofluids. Li
et al. [16] evaluated the co-efficient of viscosity of CuO and water
based nanofluid using the capillary viscometer. They revealed that
the co-efficient of viscosity gradually diminishes with the escalat-
ing temperature. Further, surface morphology, volume proportion,
particle size and rate of shear are the other factors which influence
the viscosity. Vajjha and Das [17] proposed a mathematical model
for the specific heat of the nanofluids consisting of nanometer level
Al2O3, ZnO and SiO2 particles immersed in the base fluid containing
60% ethylene glycol with water. When the theoretical data was
compared with the experimental data, they observed only 2.7% of
error in the experimental work. They also indicated that the nano-
fluid with minimum specific heat can carry the thermal energy
easily.

Two numerical models were developed by Hanley et al. [18]
reported that the specific heat of the base fluid is diminished with
the raise in the volume proportion of nanoparticles. Yousefi et al.
[19] performed the experiments in order to envisage the density
for Al2O3 disbanded-water and discovered that the density ampli-
fied with the proportion of nanoparticles but reduced with the
raise in temperature. It is discerned from the previous studies that
the high conductivity nanometer particles encompasses the inher-
ent capability of boosting thermal properties of the base fluids
[20,21]. In this current investigation, the influence of CeO2

nanoparticles on the thermal conductivity, co-efficient of viscosity,
specific heat and density of nanofluids of the base fluids by varying
the particle volume concentrations and temperature is evaluated
experimentally for heat transport purposes such as for solar ther-
mal components.
Fig. 2. EDX graph of CeO2 nanoparticles.
2. Materials and methods

Cerium oxide nanoparticle (CeO2) is a type of earth metal oxide
which plays a pivotal role in heat shifting applications due to its
versatile characteristics. Fig. 1 represents the powder of CeO2

nanoparticles. CeO2 nanoparticles have several benefits like good
availability and easy to prepare, possess good thermal properties,
good economic potential, good stability with water when compar-
2

ing to other nanoparticles, no toxicity or flammability and environ-
mental friendly. Some of the properties of CeO2 are listed in
Table 1.

2.1. Analysis on elemental composition

EDX is a method which gives elemental proportion of different
constituents present in a chemical. This method analyses X-rays
emitted from the sample after assailing by the beam of electrons.
The ionization energy is represented by abscissa of the EDX spec-
trum whereas ordinate signifies the counts. From the Fig. 2, it
was observed that the crests obtained rely on the cerium and oxy-
gen molecules alone.

2.2. Determination of shape of nanoparticle

Scanning Electron Microscope (SEM) is a influential method
used for learning the shape of nanoparticle and suspension unifor-
mity. Morphology test was carried out by allowing a superior grin
of elevated energy electrons on the sample surface of the nanopar-
ticle for viewing the morphology of the CeO2 nanoparticles. The
images of the nanoparticles with two magnifications have been
shown in Fig. 3. The prepared nanoparticles looked in spherical



Fig. 3. SEM images of CeO2 nanoparticles.
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shape and the image confirms that the highly agglomerated parti-
cles are in the size range of micrometer under ambient condition.

2.3. Assessing volume concentration of nanoparticle

To evaluate the quantity of CeO2 nanoparticles for preparation
of nanofluid, the law of mixture formula has been used. A percep-
tive balance having a 0.1 mg resolution is utilized to quantify the
nanoparticles precisely. The required weight quantity of the
nanoparticles for preparing 1000 ml water base is calculated by
using the following relation.

% volume concentrationof CeO2 ¼
WCeO2
qCeO2

� �

WCeO2
qCeO2

þ Wbf

qbf

� � ¼
WCeO2
7132

h i
WCeO2
7132 þ 1000

1000

h i

ð1Þ
Table 2
Volume proportions of CeO2 nanoparticle in different nanofluids.

S.No Volume proportion, u (%) Weight of nanoparticle in gms

1 0.01 0.713
2 0.05 3.57
3 0.1 7.13
4 0.2 14.26
5 0.3 21.39

Fig. 4. Nanofluid preparatio
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Table 2 summarizes the quantity of CeO2 nanoparticles used to
synthesize the nanofluids with different volume proportion with a
1000 ml of base fluid.

2.4. Preparation of CeO2/water nanofluid

The cerium oxide nanopowder having purity of 99.5% for the
experimental study was purchased from Alfa Aesar. The crystallo-
graphic structure of CeO2 nanoparticle is spherical [22]. The aver-
age spherical diameter of all the nanoparticles is approximately
25 nm. Water based CeO2 nanofluid was prepared in the present
work using two-step method [23]. CeO2 nanoparticles were first
weighed precisely based on the profound volume proportions i.e.
0.01%, 0.05%, 0.1%, 0.2% and 0.3%, respectively evaluated using
the Equation (1). Table 2 represents the quantity of nanoparticles
needed to synthesize various volume proportion of the nanofluid.
Preparation of nanofluids had done for a flat plate type solar collec-
tor with ladder type heat exchanger having 8.5 L intake capacity of
working fluids. It was estimated that 0.7132 g of nanoparticles is
required to synthesize a CeO2/water nanofluid containing 0.01%
volume proportion. With the help of, the required quantity of
CeO2 nanoparticles was added at a snail’s pace in the water
employing a magnetic stirrer, maintaining constant stirring for
around thirty minutes. Using ultrasonicator (QSonica model of
Q500-110, with the probe diameter of 12.7 mm), the prepared
solution was once again sonicated continuously for about thirty
minutes in order to get homogeneous mixture with a frequency
ns using ultrasonicator.
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range of 45 kHz [24,25]. Similarly CeO2/water nanofluid for other
volume concentrations was prepared following the same proce-
dure. The prepared nanofluid solutions are depicted in Fig. 4.
2.5. Determination of CeO2/water characteristics

The thermo-physical characteristics of CeO2/water nanofluid
are evaluated experimentally for all the concentrations. The mass
of nanofluid increases per unit volume because of the totaling of
nanoparticles in the nanofluid. A digital density meter with a pre-
determined uncertainty of ± 0.034% was used to find the densities
of CeO2/water nanofluid for all the volume concentrations under
investigation. Dynamic viscosity is one of the main parameter for
determining Rheological behaviour of the nanofluid and the heat
transport rate of nanofluids mainly relying on its viscosity. The
co-efficient viscosity of nanofluids for all the volume concentra-
tions has been deliberated with the help of Brookfield viscometer
with the manufacturer specified uncertainty of ±1.0%.

The specific heat is another vital thermo-physical property as
mentioned in earlier sections and it is measured with the aid of
DSC (with an accuracy of ±0.15%), which uses the thermo analytical
technique [26,27]. Thermal properties analyzer was exploited to
compute thermal conductivity of CeO2/water nanofluid (with an
instrument uncertainty of ±0.5%).
Fig. 5. Thermal conductivity of nanofluid with temperature rise.

Fig. 6. Validation of measured thermal condu
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3. Results and discussion

3.1. Thermal conductivity of nanofluids

The nanofluids having good thermophysical properties are sig-
nificant to boost-up the heat shifting behaviour [28,29]. The heat
conductivity of the any nanomaterials is solely relying on the
nanoparticles size, shape, materials and base fluid corresponding
to temperature. Fig. 5 illustrates the variation of heat conductivity
of CeO2/water fluids at various nanoparticle proportionss of 0.01%,
0.05%, 0.1%, 0.2% and 0.3% respectively by varying the temperature.
It is evaluated that the heat conductivity of CeO2/water fluids is
augmented with raise in particle volume concentrations by chang-
ing the temperature. The heat conductivity of CeO2/water nanoflu-
ids with the proportion of 0.3 vol% is 35.97% higher than that of
0.01% volume concentration at temperature of 350 �C. This is due
to the totaling of nanoparticles inside the base fluid in consequence
of the Brownianmotion, which influences the thermal behaviour of
nanofluid [30,31]. Besides, the raise in nanoparticle volume pro-
portion augmented the thermal conductivity because of interfacial
layers.

Fig. 6 compares the experiemntal thermal conductivity with a
proposed analytical method by Mahian et al. [32]. The deviation
between the measured and a calculated value are within the limit,
which validates the experimental results.
3.2. Specific heat of nanofluids

Specific heat is one of the important thermal characteristics of
nanofluids which is considered to be the prominent factor in the
heat transport applications. Fig. 7 shows the relationship between
specific heat with various particle volume concentrations of CeO2/
water nanofluids by varying the temperature. It is noted that speci-
fic heat of CeO2/water nanofluids is diminished with raise in parti-
cle proportion and increase in temperature. It is also perceived that
the CeO2/water nanofluids having 0.3% volume fraction was having
specific heat of about 5% lesser than the base fluids at the
temperature of 35 �C. It is seen from the Fig. 7 that the nanofluids
with 0.3% volume fraction are possessing 2% lower specific heat
than that of 0.01% volume concentration. This is due to the fact that
the raise in the volume concentrations resulted in the enrichment
of the density of nanofluids which effectively transferred the
ctivity values with the analytical model.



Fig. 7. Specific heat of nanofluids with temperature rise.

Fig. 9. Density of nanofluids with temperature rise.
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energy to nearest fluid molecules thereby reducing their specific
heat [5].
3.3. Viscosity of nanofluids

The drop in pressure and the pumping power for heat transfer
applications depend on the dynamic viscosity. The co-efficient of
viscosity of the traditional base fluid, particle size, temperature,
kind of nanoparticles and the particle loading affects the overall
viscosity of the systems. Fig. 8 represents the variation of viscosity
with different volume concentration of CeO2/water nanofluid by
varying the temperature. It is seen from the graph that the co-
efficient of viscosity of nanofluids is linear to volume percentage
of nanoparticles whereas it is inversely proportional to the temper-
ature of the CeO2/water nanofluid. It can be perceived that the co-
efficient of viscosity of CeO2/water nanofluids with 0.3% volume
concentration is 1.56% higher than that of 0.01% volume concentra-
tion at temperature of 250 �C whereas it is decreased by 1.19% at
temperature of 550 �C with similar concentrations. It was proved
that the CeO2 nanofluids up to 0.4 vol% of particle loading would
result in Newtonian behaviour with slight variation on the co-
efficient of viscosity as there would not be noteworthy communi-
cations among the nanoparticles. This may be due to the addition
of CeO2 nanoparticles, which will be resulting in moderately huge
Fig. 8. Viscosity of nanofluids with temperature rise.
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disconnection amid the particles. Further, nanofluid with 0.3 vol
fraction of CeO2 has shear-thinning behaviour at lower rate of
shear [33]. Hence, it can be concluded that the co-efficient of vis-
cosity of nanofluids is primarily depending on particle size, but it
may not be affected significantly by volume concentration and
density of nanoparticles.

3.4. Density of nanofluids

The density of nanofluids unswervingly impinges on the Rey-
nolds number, frictionfactor, pressure loss and Nusselt number. It
is considerably affecting the heat transport performance of any
nanofluids. Fig. 9 shows the variation of density of CeO2/water
nanofluids with diversified volume fractions with respect to tem-
perature. It is noted from the graph that the density of nanofluids
is increased with raise in volume concentrations whereas it is
reduced when increasing the temperature of CeO2/water nanoflu-
ids. The density of CeO2/water nanofluids is 1.76% higher than
0.3% volume concentration when compared to 0.01% volume con-
centration. It is also revealed that even at higher volume propor-
tion the density and co-efficient of viscosity of CeO2/water fluids
is increased less than 2% due to which the pumping power require-
ment and drop in pressure is comparatively low for CeO2/water
nanofluid [1].

4. Conclusion

The present analysis concentrates on a comparative study on
thermophysical properties of CeO2/water nanofluids experimen-
tally with respect to particle volume concentrations by varying
the temperature. The analysis is carried out for the CeO2/water
nanofluids with five different particle volume percentages of
0.01, 0.05, 0.1, 0.2, and 0.3 respectively. The elemental composition
and surface morphology of the CeO2 nanoparticle was studied with
the help of EDX and SEM analysis. The outcomes confirmed that
the thermal conductivity has ascending trend whereas the specific
heat has descending trend with nanoparticle proportion and tem-
perature. It is validated that the thermal conductivity, density and
co-efficient of viscosity of CeO2/water nanofluids with 0.3% vol. is
increased 35.97%, 1.76% and 1.56% respectively when compared
to 0.01 vol proportions. It is evaluated that the specific heat com-
petency of CeO2/water nanofluids is reduced 5% with 0.3%vol. con-
centrations when compared to base fluids. It is concluded that the
thermophysical properties are based on particle size, volume frac-
tion and operating temperature of nanofluids.
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